اندازه‌گیری آزمایشگاهی تراوایی نسبی گاز و میعانات براساس شرایط یکی از میادین گازی ایران- روش شبه پایا

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در مخازن گاز میعانی هنگامی‌که فشار ته‌چاهی کمتر از فشار نقطه شبنم سیال باشد، نواحی اطراف چاه به‌وسیله تعامل بین نیرو‌های ویسکوز، مویینه و اینرسی کنترل می‌شود. تأثیر این نیرو‌ها بر تراوایی نسبی گاز و میعانات، اندازه‌گیری دقیق تراوایی نسبی گاز و میعانات را به کاری چالش برانگیز تبدیل کرده است. دو اثر منحصر به فرد و پیچیده‌ای که جریان گاز و میعانات در نواحی نزدیک چاه را تحت تأثیر قرار می‌دهند عبارتند از 1) اثر اینرسی: کاهش تراوایی نسبی گاز و میعانات با افزایش سرعت و 2) پدیده جفت‌شدگی مثبت: افزایش تراوایی نسبی گاز با افزایش سرعت یا کاهش کشش سطحی. در این پژوهش، نتایج اندازه‌گیری داده‌های تراوایی نسبی گاز و میعانات، برروی مغزه کربناته مخزنی با تراوایی mD 2/19 و تخلخل 21%، با استفاده از سیال گاز میعانی مشابه سیال یکی از میادین گازی ایران، ارائه شده است. آزمایش‌های سیلاب‌زنی مغزه به‌روش شبه پایا، در سه کشش سطحی مختلف (05/13، 5/9 و mNm-1 7/2) و سه سرعت متفاوت (30،60 و m/day 90) انجام شده، و تراوایی نسبی گاز و میعانات در شرایطی مشابه نواحی اطراف چاه اندازه‌گیری شده-است. اثر پدیده‌های اینرسی و جفت‌شدگی مثبت، به‌وسیله انجام آزمایش‌ها در مقادیر مختلف سرعت و کشش سطحی به‌خوبی نشان داده شده است. نتایج نشان دادند که در مقادیر بالای کشش سطحی (05/13 و mNm-1 5/9)، تراوایی نسبی گاز با افزایش سرعت، به‌ترتیب حدود 40% و 31% کاهش پیدا می‌کند. درحالی‌که، در مقادیر کم کشش سطحی (mNm-1 7/2)، میزان کاهش تراوایی نسبی گاز و میعانات با افزایش سرعت، بسیار کاهش یافته و به 4% می‌رسد. بنابراین نتایج این پژوهش حاکی از این است که براساس شرایط یکی از میادین گازی ایران، کشش سطحی آستانه برابر mNm-1 7/2 بوده و در مقادیر بالاتر از این مقدار، به‌دلیل غالب بودن اثر اینرسی، افزایش سرعت جریان گاز سبب بهبود تولید گاز نخواهد شد. نتایج این پژوهش، در نواحی نزدیک چاه‌های تولیدی جایی که تراوایی گاز و میعانات وابسته به‌سرعت قابل استناد است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Measurment of Gas Relative Permeablity- PSS Method

نویسندگان [English]

  • Amin Nasirpour
  • jalal fahimpour
Department of Petroleum Engineering, AmirKabir University of Technology, Tehran, Iran
چکیده [English]

Flow around the wellbore of gas/condensate systems, when pressure drops below dewpoint, is controlled by complex interaction of capillary, viscous, and inertial forces. Hence, it is challenging to determine accurately gas/condensate relative permeability (kr) that is affected by the relative impact of these competing forces. Two unique and complex effects that prevail in gas/condensate flow behaviour near the wellbore are: i) negative inertia, decrease in relative permeability with increasing velocity and ii) positive coupling, increase in relative permeability by increasing velocity/decreasing IFT. This paper presents results of relative permeability measurements on a low permeability carbonate core, using a gas-condensate fluid simillar to gas-condensate fluid of one of the Iran’s gas fields. The experiments used a pseudo-steady-state technique at high pressure and high velocity, measuring relative permeability under conditions similar to the near-well region of a gas-condensate reservoir. By carrying out measurements at a range of interfacial tensions and velocities, the results can be used to distinguish between high capillary number and inertial flow effects, and to quantify the impact of these two conflicting phenomena.

کلیدواژه‌ها [English]

  • Gas Condensate Reservoir
  • Capillary Force
  • Inertia Effect
  • Coupling Effect
  • PSS Method
[1]. Ganie, K., Idris, A. K., Mohshim, D. F., Sulaiman, W. R. W., Saaid, I. M., & Malik, A. A. (2019). A review on the wettability alteration mechanism in condensate banking removal. Journal of Petroleum Science and Engineering, 183, 106431. doi.org/10.1016/j.petrol.2019.106431.##
[2]. Sayed, M. A., & Al-Muntasheri, G. A. (2016). Mitigation of the effects of condensate banking: a critical review. SPE Production & Operations, 31(02), 85-102. doi.org/10.2118/168153-PA.##
[3]. Henderson, G. D., Danesh, A., Tehrani, D. H., & Al-Kharusi, B. (2000). The relative significance of positive coupling and inertial effects on gas condensate relative permeabilities at high velocity. In SPE Annual Technical Conference and Exhibition? (pp. SPE-62933). SPE. doi.org/10.2118/62933-MS.##
[4]. Sævareid, A., Whitson, C. H., & Fevang, Ø. (1999, August). An engineering approach to measuring and modeling gas condensate relative permeabilities. In SCA Conference held in Goldon, CO.##
[5]. شعبانی، ب.، محمدی، ص. و کمری، ا. (2016) بررسی اثر عدد موئینگی و جریان غیردارسی بر عملکرد تولید از مخازن گاز میعانی در میدان گازی پارس جنوبی. پژوهش نفت، 26(3-95): 174-187، pr.2016.645/اdoi:10.22078.##
[6]. Mott, R., Cable, A., & Spearing, M. (2000, October). Measurements and simulation of inertial and high capillary number flow phenomena in gas-condensate relative permeability. In SPE Annual Technical Conference and Exhibition? (pp. SPE-62932). doi.org/10.2118/62932-MS.##
[7]. Jamaloei, B. Y. (2015). The effect of interfacial tension on two-phase relative permeability: a review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(3), 245-253. doi.org/10.1080/15567036.2011.557708.##
[8]. Jamiolahmady, M., Danesh, A., Tehrani, D. H., & Duncan, D. B. (2000). A mechanistic model of gas-condensate flow in pores. Transport in Porous Media, 41, 17-46.##
[9]. Henderson, G. D., Danesh, A., & Tehrani, D. (1999, August). Effect of positive rate sensitivity and inertia on gas condensate relative permeability at high velocity. In IOR 1999-10th European Symposium on Improved Oil Recovery (pp. cp-80). European Association of Geoscientists & Engineers. doi.org/10.3997/2214-4609.201406352.##
[10]. Whitson, C. H., Fevang, Ø., & Sævareid, A. (1999, October). Gas condensate relative permeability for well calculations. In SPE Annual Technical Conference and Exhibition? (pp. SPE-56476). doi.org/10.2118/56476-MS.##
[11]. Bang, V., Pope, G. A., Sharma, M. M., & Baran Jr, J. R. (2009). Development of a successful chemical treatment for gas wells with water and condensate blocking damage. In SPE Annual Technical Conference and Exhibition? (pp. SPE-124977). doi.org/10.2118/124977-MS.##
[12]. Bardon, C., & Longeron, D. G. (1980). Influence of very low interfacial tensions on relative permeability. Society of Petroleum Engineers Journal, 20(05), 391-401. doi.org/10.2118/7609-PA.##
[13]. Danesh, A., Henderson, G. D., Krinis, D., & Peden, J. M. (1988, October). Experimental investigation of retrograde condensation in porous media at reservoir conditions. In SPE Annual Technical Conference and Exhibition? (pp. SPE-18316). doi.org/10.2118/18316-MS.##
[14]. Cable, A., Mott, R., & Spearing, M. (1999, August). Experimental techniques for the measurement of relative permeability and in-situ saturation in gas condensate near well bore and drainage studies. In International Symposium of the Society of Core Analysts, Golden, Colorado, 2-4.##
[15]. App, J. F., & Burger, J. E. (2009). Experimental determination of relative permeabilities for a rich gas/condensate system using live fluid. SPE Reservoir Evaluation & Engineering, 12(02), 263-269. doi.org/10.2118/109810-PA.##
[16]. Asar, H., & Handy, L. L. (1988). Influence of interfacial tension on gas/oil relative permeability in a gas-condensate system. SPE Reservoir Engineering, 3(01), 257-264. doi.org/10.2118/11740-PA.##
[17]. Henderson, G. D., Danesh, A., Tehrani, D. H., & Peden, J. M. (1997). The effect of velocity and interfacial tension on relative permeability of gas condensate fluids in the wellbore region. Journal of Petroleum Science and Engineering, 17(3-4), 265-273. doi.org/10.1016/S0920-4105(96)00048-4.##
[18]. Kalaydjian, F. M., Bourbiaux, B. J., & Lombard, J. M. (1996, October). Predicting gas-condensate reservoir performance: how flow parameters are altered when approaching production wells. In SPE Annual Technical Conference and Exhibition? (pp. SPE-36715). doi.org/10.2118/36715-MS.##
[19]. Henderson, G. D., Danesh, A., Tehrani, D. H., Al-Shaidi, S., & Peden, J. M. (1998). Measurement and correlation of gas condensate relative permeability by the steady-state method. SPE Reservoir Evaluation & Engineering, 1(02), 134-140. doi.org/10.2118/30770-PA.##
[20]. Calisgan, H., Demiral, B., & Akin, S. (2006, April). Near-critical gas/condensate relative permeability of carbonates. In SPE Improved Oil Recovery Conference? (pp. SPE-99710). doi.org/10.2118/99710-MS.##
[21]. Jamiolahmady, M., Sohrabi, M., Ghahri, P., & Ireland, S. (2010). Gas/condensate relative permeability of a low permeability core: coupling vs. inertia. SPE Reservoir Evaluation & Engineering, 13(02), 214-227. doi.org/10.2118/120088-PA.##
[22]. Kalla, S., Leonardi, S. A., Berry, D. W., Poore, L. D., Sahoo, H., Kudva, R. A., & Braun, E. M. (2015). Factors that affect gas-condensate relative permeability. SPE Reservoir Evaluation & Engineering, 18(01), 5-10. doi.org/10.2118/173177-PA.##