[1]. حسینی جناب، م.، تصفیه و فراورش گاز، چاپ اول، پژوهشگاه صنعت نفت، 1392، 1-640. شابک: 9786005961683.##
[2]. Stewart, O., & Minnear, L. (2010). Sulfolane technical assistance and evaluation report. Alaska Department of Environmental Conservation. ##
[3]. Hosseini-Jenab M., Zoghi A.T., Vahidi M., Jalili A.H., Abedinzadegan Abdi M. (2013) Improved formulation for absorption of acidic gases and sulphure compound (Parsi SolTM), Iran patent Number 81957 (Feb. 5). ##
[4]. Maddox R. N. (1985) Gas conditioning and processing, Vol 4: Gas and liquid sweetening, Campbell Petrolum Series. ##
[5]. Lepaumier, H., Picq, D., & Carrette, P. L. (2009). New amines for CO2 capture. I. Mechanisms of amine degradation in the presence of CO2. Industrial & Engineering Chemistry Research, 48(20), 9061-9067. doi.org/10.1021/ie900472x. ##
[6]. Lepaumier, H., da Silva, E. F., Einbu, A., Grimstvedt, A., Knudsen, J. N., Zahlsen, K., & Svendsen, H. F. (2011). Comparison of MEA degradation in pilot-scale with lab-scale experiments. Energy Procedia, 4, 1652-1659. doi.org/10.1016/j.egypro.2011.02.037. ##
[7]. Bello, A., & Idem, R. O. (2006). Comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases. Industrial & engineering chemistry research, 45(8), 2569-2579. doi.org/10.1021/ie050562x. ##
[8]. Chi, S., & Rochelle, G. T. (2002). Oxidative degradation of monoethanolamine. Industrial & engineering chemistry research, 41(17), 4178-4186. doi.org/10.1021/ie010697c. ##
[9]. Sexton, A. J., & Rochelle, G. T. (2011). Reaction products from the oxidative degradation of monoethanolamine. Industrial & Engineering Chemistry Research, 50(2), 667-673. doi.org/10.1021/ie901053s. ##
[10]. Goff, G. S., & Rochelle, G. T. (2006). Oxidation inhibitors for copper and iron catalyzed degradation of monoethanolamine in CO2 capture processes. Industrial & engineering chemistry research, 45(8), 2513-2521. doi.org/10.1021/ie0490031. ##
[11]. Goff, G. S., & Rochelle, G. T. (2004). Monoethanolamine degradation: O2 mass transfer effects under CO2 capture conditions. Industrial & Engineering Chemistry Research, 43(20), 6400-6408. doi.org/10.1021/ie0400245. ##
[12]. Supap, T., Idem, R., Tontiwachwuthikul, P., & Saiwan, C. (2009). Kinetics of sulfur dioxide-and oxygen-induced degradation of aqueous monoethanolamine solution during CO2 absorption from power plant flue gas streams. International Journal of Greenhouse Gas Control, 3(2), 133-142. doi.org/10.1016/j.ijggc.2008.06.009. ##
[13]. Uyanga, I. J., & Idem, R. O. (2007). Studies of SO2-and O2-induced degradation of aqueous MEA during CO2 capture from power plant flue gas streams. Industrial & Engineering Chemistry Research, 46(8), 2558-2566. doi.org/10.1021/ie0614024. ##
[14]. Challis, B. C., & Challis, J. A. (1982). N-Nitrosamines and N-nitrosoimines. Amino, Nitrosco and Nitro Compounds and Their Derivatives (1982) Supplement F: Part 2, 2, 1151-1223. doi.org/10.1002/9780470771679.ch11. ##
[15]. Williams, L.H. (1988) N-Nitrosation. Cambridge University Press, Cambridge, 77–112. ##
[16]. Tanthapanichakoon, W., Veawab, A., & McGarvey, B. (2006). Electrochemical investigation on the effect of heat-stable salts on corrosion in CO2 capture plants using aqueous solution of MEA. Industrial & engineering chemistry research, 45(8), 2586-2593. ##
[17]. Gouedard, C., Picq, D., Launay, F., & Carrette, P. L. (2012). Amine degradation in CO2 capture. I. A review. International journal of greenhouse gas control, 10, 244-270. doi.org/10.1016/j.ijggc.2012.06.015. ##
[18]. Lepaumier, H., Picq, D., & Carrette, P. L. (2009). New amines for CO2 capture. I. Mechanisms of amine degradation in the presence of CO2. Industrial & Engineering Chemistry Research, 48(20), 9061-9067. doi.org/10.1021/ie900472x. ##
[19]. Lepaumier, H., da Silva, E. F., Einbu, A., Grimstvedt, A., Knudsen, J. N., Zahlsen, K., & Svendsen, H. F. (2011). Comparison of MEA degradation in pilot-scale with lab-scale experiments. Energy Procedia, 4, 1652-1659. doi.org/10.1016/j.egypro.2011.02.037. ##
[20]. Strazisar, B. R., Anderson, R. R., & White, C. M. (2001). Degradation of monoethanolamine used in carbon dioxide capture from flue gas of a coal-fired electric power generating station (No. DOE/NETL-2001/1144). National Energy Technology Laboratory, Pittsburgh, PA (United States). ##
[21]. Strazisar, B. R., Anderson, R. R., & White, C. M. (2003). Degradation pathways for monoethanolamine in a CO2 capture facility. Energy & fuels, 17(4), 1034-1039. doi.org/10.1021/ef020272i. ##
[22]. Davis, J., & Rochelle, G. (2009). Thermal degradation of monoethanolamine at stripper conditions. Energy Procedia, 1(1), 327-333. doi.org/10.1016/j.egypro.2009.01.045. ##
[23]. Sexton, A. J., & Rochelle, G. T. (2011). Reaction products from the oxidative degradation of monoethanolamine. Industrial & Engineering Chemistry Research, 50(2), 667-673, doi.org/10.1021/ie901053s. ##
[24]. Supap, T., Idem, R., Tontiwachwuthikul, P., & Saiwan, C. (2006). Analysis of monoethanolamine and its oxidative degradation products during CO2 absorption from flue gases: A comparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations. Industrial & engineering chemistry research, 45(8), 2437-2451. doi.org/10.1021/ie050559d. ##
[25]. University of Oklahoma. Continuing Engineering Education. (1985). Proceedings of the laurance reid gas conditioning conference. University of Oklahoma. ##
[26]. Kennard, M. and Meisen, A. (1980). Control DEA degradation. Hydrocarbon Process., Int. Ed., 59: 103. ##
[27]. Kennard, M.L. and Meisen A. (1985) Mechanisms and kinetics of diethanolamine degradation., Ind. Eng. Chem. Fund., 24: 129-140. ##
[28]. Mazari, S. A., Ali, B. S., Jan, B. M., & Saeed, I. M. (2016). Thermal degradation of piperazine and diethanolamine blend for CO2 capture. International Journal of Greenhouse Gas Control, 47, 1-7. doi.org/10.1016/j.ijggc.2016.01.022. ##
[29]. Chakma, A., & Meisen, A. (1997). Methyl-diethanolamine degradation—Mechanism and kinetics. The Canadian Journal of Chemical Engineering, 75(5), 861-871. doi.org/10.1002/cjce.5450750506. ##
[30]. Chakma, A., & Meisen, A. (1988). Identification of methyl diethanolamine degradation products by gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography A, 457, 287-297. doi.org/10.1016/S0021-9673(01)82076-8. ##
[31]. Dawodu, O. F., & Meisen, A. (1991). Identification of products resulting from carbonyl sulphide-induced degradation of diethanolamine. Journal of Chromatography A, 587(2), 237-246. doi.org/10.1016/0021-9673(91)85160-H. ##
[32]. Reza, J., & Trejo, A. (2006). Degradation of aqueous solutions of alkanolamine blends at high temperature, under the presence of CO2 and H2S. Chemical Engineering Communications, 193(1), 129-138. doi.org/10.1080/009864490923592. ##
[33]. Freeman, S. A., Dugas, R., Van Wagener, D. H., Nguyen, T., & Rochelle, G. T. (2010). Carbon dioxide capture with concentrated, aqueous piperazine. International Journal of Greenhouse Gas Control, 4(2), 119-124. doi.org/10.1016/j.ijggc.2009.10.008. ##
[34]. Handojo, L., Yudiyanto, Prihartoni, M. D., Susanti, R. F., Yaswari, Y., Raksajati, A., & Indarto, A. (2018). Non-oxidative thermal degradation of amines: GCMS/FTIR spectra analysis and molecular modeling. Separation Science and Technology, 53(14), 2259-2266. doi.org/10.1080/01496395.2018.1445112. ##
[35]. Handojo, L., Yudiyanto, Prihartoni, M. D., Susanti, R. F., Yaswari, Y., Raksajati, A., & Indarto, A. (2018). Non-oxidative thermal degradation of amines: GCMS/FTIR spectra analysis and molecular modeling. Separation Science and Technology, 53(14), 2259-2266. doi.org/10.1080/01496395.2018.1445112. ##
[36]. Freeman, S. A., Davis, J., & Rochelle, G. T. (2010). Degradation of aqueous piperazine in carbon dioxide capture. International Journal of Greenhouse Gas Control, 4(5), 756-761. doi.org/10.1016/j.ijggc.2010.03.009. ##
[37]. Freeman S.A. (2011) Thermal degradation and oxidation of aqueous piperazine for carbon dioxide capture. PhD Dissertation, the University of Texas at Astin, USA. ##
[38]. Freeman, S. A., & Rochelle, G. T. (2012). Thermal degradation of aqueous piperazine for CO2 capture. 1. Effect of process conditions and comparison of thermal stability of CO2 capture amines. Industrial & Engineering Chemistry Research, 51(22), 7719-7725. doi.org/10.1021/ie201916x. ##
[39]. Wang, T. (2012) Degradation of Aqueous 2-Amino-2-methyl-1-propanol for Carbon Dioxide Capture, MS thesis, Telemark University College, Faculty of Technology, Porsgrunn, Norway. ##
[40]. Namjoshi, O., Li, L., Du, Y., & Rochelle, G. (2013). Thermal degradation of piperazine blends with diamines. Energy Procedia, 37, 1904-1911. doi.org/10.1016/j.egypro.2013.06.071. ##
[41]. Li, L., Voice, A. K., Li, H., Namjoshi, O., Nguyen, T., Du, Y., & Rochelle, G. T. (2013). Amine blends using concentrated piperazine. Energy Procedia, 37, 353-369. doi.org/10.1016/j.egypro.2013.05.121. ##
[42]. Supap, T., Idem, R., Tontiwachwuthikul, P., & Saiwan, C. (2009). Kinetics of sulfur dioxide-and oxygen-induced degradation of aqueous monoethanolamine solution during CO2 absorption from power plant flue gas streams. International Journal of Greenhouse Gas Control, 3(2), 133-142. doi.org/10.1016/j.ijggc.2008.06.009. ##
[43]. Rochelle, G.T. (2012) Thermal degradation of amines for CO2 capture. Current Opinion in Chemical Engineering, 1: 183-190. doi.org/10.1016/j.coche.2012.02.004. ##
[44]. Shokouhi, M., Farahani, H., Hosseini-Jenab, M., & Jalili, A. H. (2015). Solubility of hydrogen sulfide in N-methylacetamide and N, N-dimethylacetamide: experimental measurement and modeling. Journal of Chemical & Engineering Data, 60(3), 499-508. doi.org/10.1021/je500478t. ##
[45]. Shokouhi, M., Farahani, H., & Hosseini-Jenab, M. (2014). Experimental solubility of hydrogen sulfide and carbon dioxide in dimethylformamide and dimethylsulfoxide. Fluid Phase Equilibria, 367, 29-37. doi.org/10.1016/j.fluid.2014.01.020. ##
[46]. Shokouhi, M., Rezaierad, A. R., Zekordi, S. M., Abbasghorbani, M., & Vahidi, M. (2016). Solubility of hydrogen sulfide in ethanediol, 1, 2-propanediol, 1-propanol, and 2-propanol: experimental measurement and modeling. Journal of Chemical & Engineering Data, 61(1), 512-524. doi.org/10.1021/acs.jced.5b00680. ##
[47]. Shokouhi, M., Jalili, A. H., & Zoghi, A. T. (2017). Experimental investigation of hydrogen sulfide solubility in aqueous sulfolane solution. The Journal of Chemical Thermodynamics, 106, 232-242. doi.org/10.1016/j.jct.2016.11.025. ##
[48]. Shokouhi, M., Farahani, H., Vahidi, M., & Taheri, S. A. (2017). Experimental solubility of carbonyl sulfide in sulfolane and γ-butyrolactone. Journal of Chemical & Engineering Data, 62(10), 3401-3408. doi.org/10.1021/acs.jced.7b00428. ##
[49]. NIST chemistry web book http://webbook.nist.gov/chemistry/fluid/ (accessed Oct. 2019). ##
[50]. Zoghi, A. T., Shokouhi, M., Abbasghorbani, M., Vahidi, M., Zare, M., & Daripour, S. (2020). Investigation of sulfolane degradation in aqueous alkanolamine solutions under the stripping operational condition. International Journal of Thermophysics, 41, 1-16. ##
[51]. Leonard G.,. Toye D, Heyen G. (2014) Experimental study and kinetic model of monoethanol amine oxidative and thermal degradation for post-combustion CO2 capture, Int. J. Greenhouse Gas Control, 30: 171-178. ##
[52]. Davis J.D. (2009) Thermal degradation of aqeous amine used for carbon dioxide capture. University of Texas at Austin. USA (Ph.D. thesis). ##
[53]. Lepaumier H. (2008) Etude dies mecanismes die degradation dies amines utilitisees pour le cap tage du CO2 dans les fumees. University of Savoie, France (Ph.D. thesis). ##
[54]. Du, Y., Li, L., Namjoshi, O., Voice, A. K., Fine, N. A., & Rochelle, G. T. (2013). Aqueous piperazine/N-(2-aminoethyl) piperazine for CO2 capture. Energy Procedia, 37, 1621-1638. doi.org/10.1016/j.egypro.2013.06.038. ##
[55]. Zamani, M., Shokouhi, M., Fatoorehchi, H., & Vahidi, M. (2024). Thermal degradation of piperazine in sulfolane aqueous solution in CO2 capture process. Journal of Solution Chemistry, 53(3), 486-505.doi.org/10.1007/s10953-023-01342-8. ##
[56]. Zamani, M., Shokouhi, M., Fatoorehchi, H., & Vahidi, M. (2024). Thermal Degradation of Piperazine in Sulfolane Aqueous Solution in CO2 Capture Process. Journal of Solution Chemistry, 53(3), 486-505. ##