بررسی تخریب گرمایی محلول مونواتانول‌آمین و متیل‌دی‌اتانول‌آمین تحت شرایط عملیاتی برج احیاء

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تصفیه گاز، پژوهشکده توسعه فن‌آوری‌های فرآورش و انتقال گاز، پژوهشگاه صنعت نفت، تهران، ایران

2 گروه طراحی فرآیند، دانشکده مهندسی شیمی، دانشگاه تهران، ایران

چکیده

استفاده از آلکانول آمین در محیط آبی و هیبریدی به‌عنوان یک روش مفید برای شیرین‌سازی گاز طبیعی در پالایشگاه‌های نفت و گاز مورد توجه محققین و کارشناسان تصفیه گاز می‌باشد. اثر محیطی (آبی و هیبریدی) فرمولاسیون‌های آلکانول آمین می تواند در سرعت تخریب گرمایی آمین دارای اهمیت باشد. در کار حاضر سرعت تخریب گرمایی مونو اتانول آمین (MEA) و متیل دی اتانول آمین  (MDEA) در حالت بارگذاری شده (حضور CO2) و در محیط آبی و هیبریدی (سولفولان + آب) و دمای C° 145 با استفاده از دستگاه کروماتوگرافی گازی مورد بررسی قرار گرفت. همچنین برای تایید و توجیح محصولات حاصل از تخریب گرمایی MDEA توسط سازوکار های ارائه شده آزمون تجربی در محیط آبی برای دمای C° 160 تکرار شد. سرعت تخریب گرمایی MEA و MDEA در هر دو محیط از مرتبه اول است، ثابت سرعت شبه درجه اول برای محلول wt.% 20 مونو‌اتانول‌آمین در دمای C° 145 در محیط آبی 8-10 × (1/0 ± 28/6) و در محیط هیبریدی 7-10 × (3/0± 26/2) برثانیه به‌دست آمد و برای تخریب محلول wt.% 40 متیل‌دی‌اتانول‌آمین در محیط آبی در دمای C° 145 و C° 160 به‌ترتیب برابر 8-10 × 19/3 و 7-10 × 12/2 و برای محیط هیبریدی در دمای C° 145 برابر 8-10 × 09/8 برثانیه حاصل شد. تخریب متیل‌دی‌اتانول‌آمین در دمای C° 160 با سرعت بیشتر و همراه با محصولات متنوع‌تری نسبت به دمای C° 145 می‌باشد و این امر امکان بررسی سازوکار ارائه شده را تسهیل می‌کند. انتظار می‌رود مسیر تخریب گرمایی متیل‌دی‌اتانول‌آمین از طریق حمله هسته‌دوستی گروه آمینی و انتقال گروه متیل یا هیدروکسی اتیل از آمین پروتونه شده به مولکول هسته‌دوست حمله کننده صورت پذیرد. با توجه به نتایج تجربی به‌دست آمده، ثابت سرعت شبه درجه اول تخریب گرمایی MDEA و MDE در محیط هیبریدی بزرگتر از محیط آبی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Mono Ethanol Amine and Methyl Diethanol Amine Degradation under the Stripping Operational Condition

نویسندگان [English]

  • Mohammad Shokouhi 1
  • Mousa Zamani 2
  • Mehdi Vahidi 1
  • Maryam Abbasghorbani 1
  • Mehrnoosh Mehrabi 1
  • Masumeh Arian 1
1 Gas Refining Technology Group, Gas Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
2 School of Chemical Engineering, College of Engineering, University of Tehran, Iran
چکیده [English]

Using alkanolamine in aqueous and hybrid context is an appropriate method for sweetening natural gas in oil and gas refineries. The environmental effect (aqueous or hybrid) of alkanolamine formulations can be important in the rate of thermal degradation of amine. In this work, the rate of thermal degradation of monoethanolamine (MEA) and methyl diethanolamine (MDEA) in the loaded state (presence of CO2) and in aqueous and hybrid environment (sulfolane + water) and temperature of 145 ◦C using gas chromatography device was investigated. To confirm and justify the products resulting from the thermal degradation of MDEA by the presented mechanisms, the experimental test was repeated in the aqueous environment for a temperature of 160◦C. The thermal degradation of MEA and MDEA in both environments is of the first order. The pseudo-first-order rate constant for a 20 wt.% solution of MEA at a temperature of 145 ◦C in an aqueous medium is (6.28±0.1) × 10-8 and in the hybrid medium, it was obtained (2.26±0.3) × 10-8 per second, and for the degradation of 40 wt.% solution of MDEA in aqueous medium at 145◦C and 160 ◦C, it was equal to 3.19× 10-8 and 2.12 × 10-7 respectively, and for the hybrid medium at 145 ◦C it was 8.09 × 10-8 seconds. Degradation of MDEA at a temperature of 160 ◦C is faster and with more diverse products than at a temperature of 145 ◦C and also the pseudo-first-order rate constant of thermal degradation of MDEA and MDE in the hybrid environment is larger than in the aqueous environment. It is expected that the path of thermal degradation of MDEA takes place through the nucleophilic attack of the amine group and the transfer of the methyl or hydroxy ethyl group from the protonated amine to the attacking nucleophilic molecule.

کلیدواژه‌ها [English]

  • Sulfolane
  • Alkanolamine Solution
  • Hybrid Solvent
  • Oxidative Degradation
[1]. حسینی جناب، م.، تصفیه و فراورش گاز، چاپ اول، پژوهشگاه صنعت نفت، 1392، 1-640.  شابک: 9786005961683.##
[2]. Stewart, O., & Minnear, L. (2010). Sulfolane technical assistance and evaluation report. Alaska Department of Environmental Conservation. ##
[3]. Hosseini-Jenab M., Zoghi A.T., Vahidi M., Jalili A.H., Abedinzadegan Abdi M. (2013) Improved formulation for absorption of acidic gases and sulphure compound (Parsi SolTM), Iran patent Number 81957 (Feb. 5). ##
[4]. Maddox R. N. (1985) Gas conditioning and processing, Vol 4: Gas and liquid sweetening, Campbell Petrolum Series. ##
[5]. Lepaumier, H., Picq, D., & Carrette, P. L. (2009). New amines for CO2 capture. I. Mechanisms of amine degradation in the presence of CO2. Industrial & Engineering Chemistry Research, 48(20), 9061-9067. doi.org/10.1021/ie900472x. ##
[6]. Lepaumier, H., da Silva, E. F., Einbu, A., Grimstvedt, A., Knudsen, J. N., Zahlsen, K., & Svendsen, H. F. (2011). Comparison of MEA degradation in pilot-scale with lab-scale experiments. Energy Procedia, 4, 1652-1659. doi.org/10.1016/j.egypro.2011.02.037. ##
[7]. Bello, A., & Idem, R. O. (2006). Comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases. Industrial & engineering chemistry research, 45(8), 2569-2579. doi.org/10.1021/ie050562x. ##
[8]. Chi, S., & Rochelle, G. T. (2002). Oxidative degradation of monoethanolamine. Industrial & engineering chemistry research, 41(17), 4178-4186. doi.org/10.1021/ie010697c. ##
[9]. Sexton, A. J., & Rochelle, G. T. (2011). Reaction products from the oxidative degradation of monoethanolamine. Industrial & Engineering Chemistry Research, 50(2), 667-673. doi.org/10.1021/ie901053s. ##
[10]. Goff, G. S., & Rochelle, G. T. (2006). Oxidation inhibitors for copper and iron catalyzed degradation of monoethanolamine in CO2 capture processes. Industrial & engineering chemistry research, 45(8), 2513-2521. doi.org/10.1021/ie0490031. ##
[11]. Goff, G. S., & Rochelle, G. T. (2004). Monoethanolamine degradation: O2 mass transfer effects under CO2 capture conditions. Industrial & Engineering Chemistry Research, 43(20), 6400-6408. doi.org/10.1021/ie0400245. ##
[12]. Supap, T., Idem, R., Tontiwachwuthikul, P., & Saiwan, C. (2009). Kinetics of sulfur dioxide-and oxygen-induced degradation of aqueous monoethanolamine solution during CO2 absorption from power plant flue gas streams. International Journal of Greenhouse Gas Control, 3(2), 133-142. doi.org/10.1016/j.ijggc.2008.06.009. ##
[13]. Uyanga, I. J., & Idem, R. O. (2007). Studies of SO2-and O2-induced degradation of aqueous MEA during CO2 capture from power plant flue gas streams. Industrial & Engineering Chemistry Research, 46(8), 2558-2566. doi.org/10.1021/ie0614024. ##
[14]. Challis, B. C., & Challis, J. A. (1982). N-Nitrosamines and N-nitrosoimines. Amino, Nitrosco and Nitro Compounds and Their Derivatives (1982) Supplement F: Part 2, 2, 1151-1223. doi.org/10.1002/9780470771679.ch11. ##
[15]. Williams, L.H. (1988) N-Nitrosation. Cambridge University Press, Cambridge, 77–112. ##
[16]. Tanthapanichakoon, W., Veawab, A., & McGarvey, B. (2006). Electrochemical investigation on the effect of heat-stable salts on corrosion in CO2 capture plants using aqueous solution of MEA. Industrial & engineering chemistry research, 45(8), 2586-2593. ##
[17]. Gouedard, C., Picq, D., Launay, F., & Carrette, P. L. (2012). Amine degradation in CO2 capture. I. A review. International journal of greenhouse gas control, 10, 244-270. doi.org/10.1016/j.ijggc.2012.06.015. ##
[18]. Lepaumier, H., Picq, D., & Carrette, P. L. (2009). New amines for CO2 capture. I. Mechanisms of amine degradation in the presence of CO2. Industrial & Engineering Chemistry Research, 48(20), 9061-9067. doi.org/10.1021/ie900472x. ##
[19]. Lepaumier, H., da Silva, E. F., Einbu, A., Grimstvedt, A., Knudsen, J. N., Zahlsen, K., & Svendsen, H. F. (2011). Comparison of MEA degradation in pilot-scale with lab-scale experiments. Energy Procedia, 4, 1652-1659. doi.org/10.1016/j.egypro.2011.02.037. ##
[20]. Strazisar, B. R., Anderson, R. R., & White, C. M. (2001). Degradation of monoethanolamine used in carbon dioxide capture from flue gas of a coal-fired electric power generating station (No. DOE/NETL-2001/1144). National Energy Technology Laboratory, Pittsburgh, PA (United States). ##
[21]. Strazisar, B. R., Anderson, R. R., & White, C. M. (2003). Degradation pathways for monoethanolamine in a CO2 capture facility. Energy & fuels, 17(4), 1034-1039. doi.org/10.1021/ef020272i. ##
[22]. Davis, J., & Rochelle, G. (2009). Thermal degradation of monoethanolamine at stripper conditions. Energy Procedia, 1(1), 327-333. doi.org/10.1016/j.egypro.2009.01.045. ##
[23]. Sexton, A. J., & Rochelle, G. T. (2011). Reaction products from the oxidative degradation of monoethanolamine. Industrial & Engineering Chemistry Research, 50(2), 667-673, doi.org/10.1021/ie901053s. ##
[24]. Supap, T., Idem, R., Tontiwachwuthikul, P., & Saiwan, C. (2006). Analysis of monoethanolamine and its oxidative degradation products during CO2 absorption from flue gases: A comparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations. Industrial & engineering chemistry research, 45(8), 2437-2451. doi.org/10.1021/ie050559d. ##
[25]. University of Oklahoma. Continuing Engineering Education. (1985). Proceedings of the laurance reid gas conditioning conference. University of Oklahoma. ##
[26]. Kennard, M. and Meisen, A. (1980). Control DEA degradation. Hydrocarbon Process., Int. Ed., 59: 103. ##
[27]. Kennard, M.L. and Meisen A. (1985) Mechanisms and kinetics of diethanolamine degradation., Ind. Eng. Chem. Fund., 24: 129-140. ##
[28]. Mazari, S. A., Ali, B. S., Jan, B. M., & Saeed, I. M. (2016). Thermal degradation of piperazine and diethanolamine blend for CO2 capture. International Journal of Greenhouse Gas Control, 47, 1-7. doi.org/10.1016/j.ijggc.2016.01.022. ##
[29]. Chakma, A., & Meisen, A. (1997). Methyl-diethanolamine degradation—Mechanism and kinetics. The Canadian Journal of Chemical Engineering, 75(5), 861-871. doi.org/10.1002/cjce.5450750506. ##
[30]. Chakma, A., & Meisen, A. (1988). Identification of methyl diethanolamine degradation products by gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography A, 457, 287-297. doi.org/10.1016/S0021-9673(01)82076-8. ##
[31]. Dawodu, O. F., & Meisen, A. (1991). Identification of products resulting from carbonyl sulphide-induced degradation of diethanolamine. Journal of Chromatography A, 587(2), 237-246. doi.org/10.1016/0021-9673(91)85160-H. ##
[32]. Reza, J., & Trejo, A. (2006). Degradation of aqueous solutions of alkanolamine blends at high temperature, under the presence of CO2 and H2S. Chemical Engineering Communications, 193(1), 129-138. doi.org/10.1080/009864490923592. ##
[33]. Freeman, S. A., Dugas, R., Van Wagener, D. H., Nguyen, T., & Rochelle, G. T. (2010). Carbon dioxide capture with concentrated, aqueous piperazine. International Journal of Greenhouse Gas Control, 4(2), 119-124. doi.org/10.1016/j.ijggc.2009.10.008. ##
[34]. Handojo, L., Yudiyanto, Prihartoni, M. D., Susanti, R. F., Yaswari, Y., Raksajati, A., & Indarto, A. (2018). Non-oxidative thermal degradation of amines: GCMS/FTIR spectra analysis and molecular modeling. Separation Science and Technology, 53(14), 2259-2266. doi.org/10.1080/01496395.2018.1445112. ##
[35]. Handojo, L., Yudiyanto, Prihartoni, M. D., Susanti, R. F., Yaswari, Y., Raksajati, A., & Indarto, A. (2018). Non-oxidative thermal degradation of amines: GCMS/FTIR spectra analysis and molecular modeling. Separation Science and Technology, 53(14), 2259-2266. doi.org/10.1080/01496395.2018.1445112. ##
[36]. Freeman, S. A., Davis, J., & Rochelle, G. T. (2010). Degradation of aqueous piperazine in carbon dioxide capture. International Journal of Greenhouse Gas Control, 4(5), 756-761. doi.org/10.1016/j.ijggc.2010.03.009. ##
[37]. Freeman S.A. (2011) Thermal degradation and oxidation of aqueous piperazine for carbon dioxide capture. PhD Dissertation, the University of Texas at Astin, USA. ##
[38]. Freeman, S. A., & Rochelle, G. T. (2012). Thermal degradation of aqueous piperazine for CO2 capture. 1. Effect of process conditions and comparison of thermal stability of CO2 capture amines. Industrial & Engineering Chemistry Research, 51(22), 7719-7725. doi.org/10.1021/ie201916x. ##
[39]. Wang, T. (2012) Degradation of Aqueous 2-Amino-2-methyl-1-propanol for Carbon Dioxide Capture, MS thesis, Telemark University College, Faculty of Technology, Porsgrunn, Norway. ##
[40]. Namjoshi, O., Li, L., Du, Y., & Rochelle, G. (2013). Thermal degradation of piperazine blends with diamines. Energy Procedia, 37, 1904-1911. doi.org/10.1016/j.egypro.2013.06.071. ##
[41]. Li, L., Voice, A. K., Li, H., Namjoshi, O., Nguyen, T., Du, Y., & Rochelle, G. T. (2013). Amine blends using concentrated piperazine. Energy Procedia, 37, 353-369. doi.org/10.1016/j.egypro.2013.05.121. ##
[42]. Supap, T., Idem, R., Tontiwachwuthikul, P., & Saiwan, C. (2009). Kinetics of sulfur dioxide-and oxygen-induced degradation of aqueous monoethanolamine solution during CO2 absorption from power plant flue gas streams. International Journal of Greenhouse Gas Control, 3(2), 133-142. doi.org/10.1016/j.ijggc.2008.06.009. ##
[43]. Rochelle, G.T. (2012) Thermal degradation of amines for CO2 capture. Current Opinion in Chemical Engineering, 1: 183-190. doi.org/10.1016/j.coche.2012.02.004. ##
[44]. Shokouhi, M., Farahani, H., Hosseini-Jenab, M., & Jalili, A. H. (2015). Solubility of hydrogen sulfide in N-methylacetamide and N, N-dimethylacetamide: experimental measurement and modeling. Journal of Chemical & Engineering Data, 60(3), 499-508. doi.org/10.1021/je500478t. ##
[45]. Shokouhi, M., Farahani, H., & Hosseini-Jenab, M. (2014). Experimental solubility of hydrogen sulfide and carbon dioxide in dimethylformamide and dimethylsulfoxide. Fluid Phase Equilibria, 367, 29-37. doi.org/10.1016/j.fluid.2014.01.020. ##
[46]. Shokouhi, M., Rezaierad, A. R., Zekordi, S. M., Abbasghorbani, M., & Vahidi, M. (2016). Solubility of hydrogen sulfide in ethanediol, 1, 2-propanediol, 1-propanol, and 2-propanol: experimental measurement and modeling. Journal of Chemical & Engineering Data, 61(1), 512-524. doi.org/10.1021/acs.jced.5b00680. ##
[47]. Shokouhi, M., Jalili, A. H., & Zoghi, A. T. (2017). Experimental investigation of hydrogen sulfide solubility in aqueous sulfolane solution. The Journal of Chemical Thermodynamics, 106, 232-242. doi.org/10.1016/j.jct.2016.11.025. ##
[48]. Shokouhi, M., Farahani, H., Vahidi, M., & Taheri, S. A. (2017). Experimental solubility of carbonyl sulfide in sulfolane and γ-butyrolactone. Journal of Chemical & Engineering Data, 62(10), 3401-3408. doi.org/10.1021/acs.jced.7b00428. ##
[49]. NIST chemistry web book http://webbook.nist.gov/chemistry/fluid/ (accessed Oct. 2019). ##
[50]. Zoghi, A. T., Shokouhi, M., Abbasghorbani, M., Vahidi, M., Zare, M., & Daripour, S. (2020). Investigation of sulfolane degradation in aqueous alkanolamine solutions under the stripping operational condition. International Journal of Thermophysics, 41, 1-16. ##
[51]. Leonard G.,. Toye D, Heyen G. (2014) Experimental study and kinetic model of monoethanol amine oxidative and thermal degradation for post-combustion CO2 capture, Int. J. Greenhouse Gas Control,  30: 171-178. ##
[52]. Davis J.D. (2009) Thermal degradation of aqeous amine used for carbon dioxide capture. University of Texas at Austin. USA (Ph.D. thesis). ##
[53]. Lepaumier H. (2008) Etude dies mecanismes die degradation dies amines utilitisees pour le cap tage du CO2 dans les fumees. University of Savoie,  France (Ph.D. thesis). ##
[54]. Du, Y., Li, L., Namjoshi, O., Voice, A. K., Fine, N. A., & Rochelle, G. T. (2013). Aqueous piperazine/N-(2-aminoethyl) piperazine for CO2 capture. Energy Procedia, 37, 1621-1638. doi.org/10.1016/j.egypro.2013.06.038. ##
[55]. Zamani, M., Shokouhi, M., Fatoorehchi, H., & Vahidi, M. (2024). Thermal degradation of piperazine in sulfolane aqueous solution in CO2 capture process. Journal of Solution Chemistry, 53(3), 486-505.doi.org/10.1007/s10953-023-01342-8. ##
[56]. Zamani, M., Shokouhi, M., Fatoorehchi, H., & Vahidi, M. (2024). Thermal Degradation of Piperazine in Sulfolane Aqueous Solution in CO2 Capture Process. Journal of Solution Chemistry, 53(3), 486-505. ##