[1]. Ismail, N. H., Salleh, W. N. W., Ismail, A. F., Hasbullah, H., Yusof, N., Aziz, F., & Jaafar, J. (2020). Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Separation and Purification Technology, 233, 116007. doi: https://doi.org/10.1016/j.seppur.2019.116007.##
[2]. Okiel, K., El-Sayed, M., & El-Kady, M. Y. (2011). Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon. Egyptian Journal of Petroleum, 20(2), 9-15. doi: https://doi.org/10.1016/j.ejpe.2011.06.002. ##
[3]. Faisal, M. (2015). Produced Water Treatment by Organoclay Adsorption and Dissolved Air Floatation (Doctoral dissertation, Faculty of Graduate Studies and Research, University of Regina), URI https://hdl.handle.net/10294/5811. ##
[4]. زندی، ا.، اکبری سنه، ر. و رحمانی چیانه، ف. (2022). تأثیر زئولیت طبیعی کلینوپتیلولیت بر خواص و عملکرد فتوکاتالیستی نیمهرسانای BiOI در تخریب نوری پساب رنگی. پژوهش نفت 32:48-65. doi: 10.22078/pr.2022.4669.3099##
[5].Lira, C. A., Silva, D. S., Costa Filho, A. P. D., Lucas, E. F., & Santana, S. A. (2017). Smectite clay modified with quaternary ammonium as oil remover, Journal of the Brazilian Chemical Society, 28(2), 208-216, doi.org/10.5935/0103-5053.20160165. ##
[6]. اکبری سنه، ر.، رحمانی، ف.، مرادی، غ. و شریفنیا، ش. (2020). تثبیت نانوذرات TiO2 برروی آلومیناسیلیکات طبیعی فرآوری شده جهت تولید هیدروژن: ارزیابی اثر فرآوری شیمیایی پایه و شرایط عملیاتی فرآیند. پژوهش نفت 30:14-30. doi: 10.22078/pr.2020.3827.2743. ##
[7]. Khalifa, A. Z., Cizer, Ö., Pontikes, Y., Heath, A., Patureau, P., Bernal, S. A., & Marsh, A. T. (2020). Advances in alkali-activation of clay minerals, Cement and Concrete Research, 132, 106050, doi: https://doi.org/10.1016/j.cemconres.2020.106050. ##
[8]. de Queiroga, L. N. F., Soares, P. K., Fonseca, M. G., & de Oliveira, F. J. V. E. (2016). Experimental design investigation for vermiculite modification: Intercalation reaction and application for dye removal. Applied Clay Science, 126, 113-121. doi: https://doi.org/10.1016/j.clay.2016.02.031. ##
[9]. Patanjali, P., Chopra, I., Patanjali, N., & Singh, R. (2020). A compendious review on clay modification techniques for wastewater remediation. The Indian Journal of Agricultural Sciences, 90(12), 2262-2274, doi.org/10.56093/ijas.v90i12.110309. ##
[10]. Rahmani, F., Haghighi, M., & Amini, M. (2015). The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene. Journal of Industrial and Engineering Chemistry, 31, 142-155. doi: https://doi.org/10.1016/j.jiec.2015.06.018##
[11]. Wang, Q., Zhang, J., & Wang, A. (2013). Alkali activation of halloysite for adsorption and release of ofloxacin. Applied Surface Science, 287, 54-61. doi: https://doi.org/10.1016/j.apsusc.2013.09.057. ##
[12]. Silva, A., Martinho, S., Stawiński, W., Węgrzyn, A., Figueiredo, S., Santos, L. H., & Freitas, O. (2018). Application of vermiculite-derived sustainable adsorbents for removal of venlafaxine. Environmental Science and Pollution Research, 25, 17066-17076. doi: 10.1007/s11356-018-1869-6. ##
[13]. Stawiński, W., Węgrzyn, A., Freitas, O., Chmielarz, L., Mordarski, G., & Figueiredo, S. (2017). Simultaneous removal of dyes and metal cations using an acid, acid-base and base modified vermiculite as a sustainable and recyclable adsorbent. Science of the Total Environment, 576, 398-408, doi.org/10.1016/j.scitotenv.2016.10.120. ##
[14]. Stawiński, W., Węgrzyn, A., Dańko, T., Freitas, O., Figueiredo, S., & Chmielarz, L. (2017). Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies. Chemosphere, 173, 107-115, doi.org/10.1016/j.chemosphere.2017.01.039. ##
[15]. da Silva Jr, U. G., Melo, M. A. D. F., da Silva, A. F., & de Farias, R. F. (2003). Adsorption of crude oil on anhydrous and hydrophobized vermiculite. Journal of Colloid and Interface Science, 260(2), 302-304. doi: https://doi.org/10.1016/S0021-9797(02)00160-1. ##
[16]. Ismadji, S., Soetaredjo, F. E., Ayucitra, A., Ismadji, S., Soetaredjo, F. E., & Ayucitra, A. (2015). Modification of clay minerals for adsorption purpose. Clay Materials for Environmental Remediation, 39-56. ##
[17]. Zhang, R., Zhu, X., & Cai, Y. (2019). The Phase Transformation Mechanism of Bentonite-Stabilized and Cetyltrimethylammonium Bromide-Stabilized Emulsions and Application in Reversible Emulsification Oil-Based Drilling Fluids. Journal of Surfactants and Detergents, 22(3), 525-534, doi.org/10.1002/jsde.12231. ##
[18]. Zhang, J., Li, L., Xu, J., & Sun, D. (2014). Effect of cetyltrimethylammonium bromide addition on the emulsions stabilized by montmorillonite. Colloid and Polymer Science, 292, 441-447. ##
[19]. Shi, Z., Li, P., & Liu, L. (2023). Interactions between CTAB and montmorillonite by atomic force microscopy and molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 657, 130656, doi.org/10.1016/j.colsurfa.2022.130656. ##
[20]. Jiménez-Castañeda, M. E., & Medina, D. I. (2017). Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water, 9(4), 235, doi.org/10.3390/w9040235. ##
[21]. Patrício, A. C. L., da Silva, M. M., de Sousa, A. K. F., Mota, M. F., & Freire Rodrigues, M. G. (2012, November). SEM, XRF, XRD, Nitrogen Adsorption, Fosters Swelling and Capacity Adsorption Characterization of Cloisite 30 B. In Materials Science Forum (Vol. 727, pp. 1591-1595). Trans Tech Publications Ltd, doi.org/10.4028/www.scientific.net/MSF.727-728.1591. ##
[22]. Zhang, L., Lu, X., Liu, X., Yang, K., & Zhou, H. (2016). Surface wettability of basal surfaces of clay minerals: Insights from molecular dynamics simulation. Energy & Fuels, 30(1), 149-160. doi: 10.1021/acs.energyfuels.5b02142##
[23]. Pishdadi-Aghdarreh, F., Norouzbeigi, R., & Velayi, E. (2023). Acid-base treatment of lightweight expanded clay aggregate (LECA) for removal of paraquat from aqueous media. Journal of Environmental Chemical Engineering, 11(5), 110405. doi.org/10.1016/j.jece.2023.110405. ##
[24]. Temuujin, J., Senna, M., Jadambaa, T., Burmaa, D., Erdenechimeg, S., & MacKenzie, K. J. (2006). Characterization and bleaching properties of acid-leached montmorillonite. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(4), 688-693, doi.org/10.1002/jctb.1469. ##
[25]. Velayi, E., & Norouzbeigi, R. (2018). Synthesis of hierarchical superhydrophobic zinc oxide nano-structures for oil/water separation. Ceramics International, 44(12), 14202-14208, doi.org/10.1016/j.ceramint.2018.05.023. ##
[26]. Senez, V., Thomy, V., & Dufour, R. (2014). Nanotechnologies for synthetic super non-wetting surfaces. Nanotechnologies for Synthetic Super Non-Wetting Surfaces, 1-12, doi.org/10.1002/9781119015093.ch1. ##
[27]. Shayesteh, H., Norouzbeigi, R., & Rahbar-Kelishami, A. (2021). Hydrothermal facile fabrication of superhydrophobic magnetic nanospiky nickel wires: Optimization via statistical design. Surfaces and Interfaces, 26, 101315, doi.org/10.1016/j.surfin.2021.101315. ##
[28]. Zhao, J., Deng, Y., Dai, M., Wu, Y., Ali, I., & Peng, C. (2022). Preparation of super-hydrophobic/super-oleophilic quartz sand filter for the application in oil-water separation. Journal of Water Process Engineering, 46, 102561, doi.org/10.1016/j.jwpe.2022.102561. ##
[29]. Chen, X., Tong, D., Fang, Z., Gao, Z., & Yu, W. (2022). Acid leaching vermiculite: a multi-functional solid catalyst with a strongly electrostatic field and brönsted acid for depolymerization of cellulose in water. Molecules, 27(10), 3149. doi.org/10.3390/molecules27103149. ##
[30]. Bi, Z., Liao, W., & Qi, L. (2004). Wettability alteration by CTAB adsorption at surfaces of SiO2 film or silica gel powder and mimic oil recovery. Applied Surface Science, 221(1-4), 25-31, doi.org/10.1016/S0169-4332(03)00948-6. ##
[31]. Widjonarko, D. M., Mayasari, O. D., Wahyuningsih, S., & Nugrahaningtyas, K. D. (2018, March). Modification of Montmorillonite with Cetyl Trimethylammonium Bromide and Tetra Ethyl Ortho Silicate. In IOP Conference Series: Materials Science and Engineering, 333, 1, 012048. IOP Publishing, doi: 10.1088/1757-899X/333/1/012048. ##
[32]. Basaleh, A. A., Al-Malack, M. H., & Saleh, T. A. (2019). Methylene Blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study. Journal of Environmental Chemical Engineering, 7(3), 103107. doi.org/10.1016/j.jece.2019.103107. ##
[33]. Hashem, F. S., Amin, M. S., & El-Gamal, S. M. A. (2015). Chemical activation of vermiculite to produce highly efficient material for Pb2+ and Cd2+ removal. Applied Clay Science, 115, 189-200.doi.org/10.1016/j.clay.2015.07.042. ##
[34]. Kabdrakhmanova, S., Aryp, K., Shaimardan, E., Kanat, E., Selenova, B., Nurgamit, K., Kerimkulova, A., Amitova, A. and Maussumbayeva, A. (2023). Acid modification of clays from the Kalzhat, Orta Tentek deposits and study their physical-chemical properties. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2023.04.427. ##
[35]. Zhou, Y., Cheng, H., Wei, C., & Zhang, Y. (2021). Effect of acid activation on structural evolution and surface charge of different derived kaolinites. Applied Clay Science, 203, 105997. doi.org/10.1016/j.clay.2021.105997. ##
[36]. Mohammed, I., Al Shehri, D., Mahmoud, M., Kamal, M. S., Alade, O., Arif, M., & Patil, S. (2022). Effect of Native Reservoir State and Oilfield Operations on Clay Mineral Surface Chemistry. Molecules, 27(5), 1739. doi.org/10.3390/molecules27051739.
[37]. Moslemizadeh, A., Aghdam, S. K. Y., Shahbazi, K., Aghdam, H. K. Y., & Alboghobeish, F. (2016). Assessment of swelling inhibitive effect of CTAB adsorption on montmorillonite in aqueous phase. Applied Clay Science, 127, 111-122, doi.org/10.1016/j.clay.2016.04.014. ##
[38]. Jiménez-Castañeda, M. E., & Medina, D. I. (2017). Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water, 9(4), 235. doi.org/10.3390/w9040235. ##
[39]. Bergström, L. M. (2016). Second CMC in surfactant micellar systems. Current Opinion in Colloid & Interface Science, 22, 46-50. doi.org/10.1016/j.cocis.2016.02.008. ##
[40]. Lin, C., Fan, B., Zhang, J., Yang, X. & Zhang, H. (2015). Study on lead ion wastewater treatment of self-assembled film. Desalination and Water Treatment 57:1-7. doi: 10.1080/19443994.2015.1121839. ##
[41]. Shi, K.Y., Chen, J.Q., Pang, X.Q., Jiang, F.J., Hui, S.S., Zhao, Z.C., Chen, D., Cong, Q., Wang, T., Xiao, H.Y. and Yang, X.B. (2023). Wettability of different clay mineral surfaces in shale: Implications from molecular dynamics simulations. Petroleum Science, 20(2), pp.689-704.doi.org/10.1016/j.petsci.2023.02.001. ##
[42]. Cassie, A. and Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society 40:546-551. ##
[43]. Xu, W., Johnston, C. T., Parker, P., & Agnew, S. F. (2000). Infrared study of water sorption on Na-, Li-, Ca-, and Mg-exchanged (SWy-1 and SAz-1) montmorillonite. Clays and Clay minerals, 48(1), 120-131. doi: 10.1346/CCMN.2000.0480115. ##
[44]. Zhang, F., Yuan, C., Lu, X., Zhang, L., Che, Q., & Zhang, X. (2012). Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. Journal of Power Sources, 203, 250-256.doi.org/10.1016/j.jpowsour.2011.12.001. ##
[45]. Bhattacharya, S., & Aadhar, M. (2014). Studies on preparation and analysis of organoclay nano particles. Resareach Journal Engineering Sciences, 2278, 9472. ISSN 2278 – 9472. ##
[46]. Maletaškić, J., Stanković, N., Daneu, N., Babić, B., Stoiljković, M., Yoshida, K., & Matović, B. (2018). Acid leaching of natural chrysotile asbestos to mesoporous silica fibers. Physics and Chemistry of Minerals, 45, 343-351. doi: 10.1007/s00269-017-0924-z. ##
[47]. Siddiqui H, Qureshi MS and Haque FZ (2016) Hexamine (HMT) assisted wet chemically synthesized CuO nanostructures with controlled morphology and adjustable optical behavior. Optical and Quantum Electronics 48:349. doi: 10.1007/s11082-016-0618-7. ##
[48]. Lira, C. A., Silva, D. S., Costa Filho, A. P. D., Lucas, E. F., & Santana, S. A. (2017). Smectite clay modified with quaternary ammonium as oil remover. Journal of the Brazilian Chemical Society, 28(2), 208-216. doi.org/10.5935/0103-5053.20160165 . ##
[49]. Xue, W., He, H., Zhu, J., & Yuan, P. (2007). FTIR investigation of CTAB–Al–montmorillonite complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4), 1030-1036. doi.org/10.1016/j.saa.2006.09.024. ##
[50]. Natural, O. (2012). Adsorption from aqueous solution onto natural and acid activated bentonite. American Journal of Environmental Science, 8(5), 510-522. doi: 10.3844/ajessp.2012.510.522. ##
[51]. Soni, V. K., Roy, T., Dhara, S., Choudhary, G., Sharma, P. R., & Sharma, R. K. (2018). On the investigation of acid and surfactant modification of natural clay for photocatalytic water remediation. Journal of Materials Science, 53, 10095-10110. doi: 10.1007/s10853-018-2308-2. ##
[52]. Pinto Brito, M. J., Veloso, C. M., Santos, L. S., Ferreira Bonomo, R. C., & Ilheu Fontan, R. D. C. (2018). Adsorption of the textile dye Dianix (R) royal blue CC onto carbons obtained from yellow mombin fruit stones and activated with KOH and H3PO4: kinetics, adsorption equilibrium and thermodynamic studies. Powder Technology, 339, 334-343. doi.org/10.1016/j.powtec.2018.08.017. ##
[53]. Wang, J., & Guo, S. (2019). The whole-aperture pore-structure characteristics of marine-continental transitional shale facies of the Taiyuan and Shanxi Formations in the Qinshui Basin, North China. Interpretation, 7(2), T547-T563. doi.org/10.1190/INT-2018-0157.1. ##
[54]. Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. ##
[55]. Zhang, M., Hu, M., Wei, S., Cai, Q., Fu, W., Shi, F., Zhang, L. and Ding, H. (2023). Factors Controlling the Pore Development of Low-Mature Marine–Continental Transitional Shale: A Case Study of the Upper Permian Longtan Shale, Western Guizhou, South China. Journal of Marine Science and Engineering, 11(10), 1862. doi.org/10.3390/jmse11101862. ##
[56]. Chutia, P., Kato, S., Kojima, T., & Satokawa, S. (2009). Adsorption of As (V) on surfactant-modified natural zeolites. Journal of Hazardous Materials, 162(1), 204-211. doi.org/10.1016/j.jhazmat.2008.05.024. ##
[57]. Shah, K. J., Mishra, M. K., Shukla, A. D., Imae, T., & Shah, D. O. (2013). Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. Journal of Colloid and Interface Science, 407, 493-499. doi.org/10.1016/j.jcis.2013.05.050. ##
[58]. da Silva Jr, U. G., Melo, M. A. D. F., da Silva, A. F., & de Farias, R. F. (2003). Adsorption of crude oil on anhydrous and hydrophobized vermiculite. Journal of Colloid and Interface Science, 260(2), 302-304. doi.org/10.1016/S0021-9797(02)00160-1. ##
[59]. Chaari, I., Medhioub, M., Jamoussi, F., & Hamzaoui, A. H. (2021). Acid-treated clay materials (Southwestern Tunisia) for removing sodium leuco-vat dye: Characterization, adsorption study and activation mechanism. Journal of Molecular Structure, 1223, 128944. doi.org/10.1016/j.molstruc.2020.128944. ##
[60]. Sun, T., Chen, J., Zhou, C., & Lei, X. (2013). Specific surface area and oil adsorption of calcinated kaolin clay. Journal of the Chinese Ceramic Society, 41(5), 685-690. doi.org/10.7521/j.issn.0454–5648.2013.05.17. ##
[61]. El-Zahhar, A. A., & Al-Hazmi, G. A. (2015). Organically modified clay for adsorption of petroleum hydrocarbon. Eur Chem Bull, 4(2), 87-91. ##
[62]. Viraraghavan, T., & Mathavan, G. N. (1990). Treatment of oily waters using peat. Water Quality Research Journal, 25(1), 73-90. doi.org/10.2166/wqrj.1990.005. ##