[1]. Eyitayo, S. I., Watson, M. C., & Kolawole, O. (2023). Produced Water Management and Utilization: Challenges and Future Directions. SPE Production & Operations, 38(03), 367-382. ##
[2]. Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y., & Da’na, D. A. (2019). Produced water characteristics, treatment and reuse: A review. Journal of Water Process Engineering, 28, 222-239. doi.org/10.1016/j.jwpe.2019.02.001. ##
[3]. Gray, M. (2020, July). Reuse of produced water in the oil and gas industry. In SPE International Conference and Exhibition on Health, Safety, Environment, and Sustainability? (p. D021S004R001). doi.org/10.2118/199498-MS. ##
[4]. Bader, M. S. H. (2007). Seawater versus produced water in oil-fields water injection operations. Desalination, 208(1-3), 159-168, doi: https://doi.org/10.1016/j.desal.2006.05.024.
[5]. Liu, Y., Lu, H., Li, Y., Xu, H., Pan, Z., Dai, P., Wang, H. and Yang, Q. (2021). A review of treatment technologies for produced water in offshore oil and gas fields. Science of the Total Environment, 775, 145485. doi.org/10.1016/j.scitotenv.2021.145485. ##
[6]. Veil, J. A. (2011). Produced water management options and technologies. In Produced water: environmental risks and advances in mitigation technologies, 537-571. New York, NY: Springer New York. ##
[7]. Kabyl, A., Yang, M., Abbassi, R., & Li, S. (2020). A risk-based approach to produced water management in offshore oil and gas operations. Process safety and Environmental protection, 139, 341-361, doi: org/10.1016/j.psep.2020.04.021. ##
[8]. Yu, L., Sang, Q., Dong, M., & Yuan, Y. (2017). Effects of interfacial tension and droplet size on the plugging performance of oil-in-water emulsions in porous media. Industrial & Engineering Chemistry Research, 56(32), 9237-9246, doi: 10.1021/acs.iecr.7b01770. ##
[9]. Jiménez, S. M., Micó, M. M., Arnaldos, M., Medina, F., & Contreras, S. (2018). State of the art of produced water treatment. Chemosphere, 192, 186-208. doi.org/10.1016/j.chemosphere.2017.10.139. ##
[10]. Ghafoori, S., Omar, M., Koutahzadeh, N., Zendehboudi, S., Malhas, R. N., Mohamed, M., ... & Mehrvar, M. (2022). New advancements, challenges, and future needs on treatment of oilfield produced water: A state-of-the-art review. Separation and Purification Technology, 289, 120652, doi: 10.1016/j.seppur.2022.120652. ##
[11]. Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2-3), 530-551. doi.org/10.1016/j.jhazmat.2009.05.044. ##
[12]. Azizov, I., Dudek, M., & Øye, G. (2021). Emulsions in porous media from the perspective of produced water re-injection–A review. Journal of Petroleum Science and Engineering, 206, 109057. doi.org/10.1016/j.petrol.2021.109057. ##
[13]. فراهانی، عباسی, تشکیل رسوب و آسیب دیدگی سازند در فرآیند تزریق آب به مخازن نفتی، چاپ دوم، چاپ شده توسط انتشارات پژوهشگاه صنعت نفت، 1396، 1-183، شابک 13 رقمی: 9786005961140. ##
[14]. Rossini, S., Roppoli, G., Mariotti, P., Renna, S., Manotti, M., Viareggio, A., & Biassoni, L. (2020). Produced water Quality impact on injection performance: predicting injectivity decline for waterflood design. In International Petroleum Technology Conference (p. D031S083R001). IPTC. ##
[15]. Bennion, D. B., Bennion, D. W., Thomas, F. B., & Bietz, R. F. (1998). Injection water quality-a key factor to successful waterflooding. Journal of Canadian Petroleum Technology, 37(06). doi.org/10.2118/98-06-06. ##
[16]. Evans, R. C. (1994). Developments in environmental protection related to produced water treatments and disposal (produced water re-injection). In SPE International Conference and Exhibition on Health, Safety, Environment, and Sustainability? (pp. SPE-27179). doi.org/10.2118/27179-MS. ##
[17]. Sharma, M. M., Pang, S., Wennberg, K. E., & Morgenthaler, L. (1997, June). Injectivity decline in water injection wells: An offshore Gulf of Mexico case study. In SPE European Formation Damage Conference and Exhibition (pp. SPE-38180). doi.org/10.2118/38180-MS. ##
[18]. Zuluaga, E., Evans, P., Nesom, P., Spratt, T., & Daniels, E. (2011). Technical Evaluations to Support the Decision to Reinject Produced Water. SPE Production & Operations, 26(02), 128-139. doi.org/10.2118/132346-PA. ##
[19]. McAuliffe, C. D. (1973). Oil-in-water emulsions and their flow properties in porous media. Journal of petroleum technology, 25(06), 727-733, doi: 10.2118/4369-pa. ##
[20]. Chen, Z., Dong, M., Husein, M., & Bryant, S. (2018). Effects of oil viscosity on the plugging performance of oil-in-water emulsion in porous media. Industrial & Engineering Chemistry Research, 57(21), 7301-7309, doi: 10.1021/acs.iecr.8b00889. ##
[21]. Cobos, S., Carvalho, M. S., & Alvarado, V. (2009). Flow of oil–water emulsions through a constricted capillary. International Journal of Multiphase Flow, 35(6), 507-515, doi.org/10.1016/j.ijmultiphaseflow.2009.02.018. ##
[22]. Rousseau, D., Hadi, L. and Nabzar, L., (2007). May. PWRI-induced injectivity decline: new insights on in-depth particle deposition mechanisms. In SPE European Formation Damage Conference and Exhibition (pp. SPE-107666). doi.org/10.2118/107666-MS. ##
[23]. Rousseau, D., Hadi, L., & Nabzar, L. (2008). Injectivity decline from produced-water reinjection: new insights on in-depth particle-deposition mechanisms. SPE Production & Operations, 23(04), 525-531. doi.org/10.2118/107666-PA. ##