بهینه‌سازی تخمین تراوایی با تلفیق نتایج آنالیز رخساره الکتریکی و الگوریتم‌های هوشمند؛ مطالعه موردی در سازند فهلیان در یکی از میادین نفتی جنوب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش مهندسی پتروفیزیک، شرکت پارس پترو زاگرس، ایران/گروه علوم‌زمین، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

2 بخش مهندسی پتروفیزیک، شرکت پارس پترو زاگرس، ایران/دانشکده علوم‌زمین، دانشگاه شهید چمران اهواز، ایران

چکیده

تراوایی یکی از مهم‌ترین خصوصیات پتروفیزیکی مخازن هیدورکربنی است. تخمین تراوایی یکی از چالش‌هایی است که مهندسان نفت در مخازن کربناته به‌ویژه مخازن کارستی با آن روبرو هستند. در این پژوهش به‌منظور تخمین تراوایی در محدوده‌های عمقی فاقد اطلاعات مغزه از روابط تجربی، آنالیز برازشی، شبکه عصبی مصنوعی و الگوریتم نزدیک‌ترین همسایگی استفاده گردید و نتایج حاصل با یکدیگر و با اندازه‌گیری‌های مغزه مقایسه شد. رخساره‌های الکتریکی این امکان را به مدل‌های هوشمند می‌دهد تا با استفاده از نمودارهای معمول پتروفیزیکی با جزئیات بیشتری تراوایی را تخمین بزنند. از طرفی با توجه به اینکه آنالیز رخساره الکتریکی برای کلیه چاه‌های میدان توسعه می‌یابد، استفاده از مدل‌های بهینه هوشمند امکان استفاده در کلیه چاه‌های میدان را در جهت تخمین بهینه تراوایی دارد. براساس نتایج به‌دست آمده شبکه عصبی مصنوعی و الگوریتم نزدیک‌ترین همسایگی، نسبت به‌روش‌های دیگر نتایج به نسبت بهتری ارائه نمودند. ضریب همبستگی میان نتایج تخمینی و مقادیر مغزه حاصل از روش‌های شبکه عصبی مصنوعی و الگوریتم نزدیک‌ترین همسایگی به‌ترتیب 2% و 5% نسبت به سایر روش‌ها بالاتر بود. به‌منظور بهینه‌سازی نتایج به‌دست آمده، تخمین تراوایی با استفاده از این دو روش در چارچوب رخساره‌های الکتریکی مدل‌سازی مجدد گردید. سپس نتایج استفاده از آنالیز رخساره‌ای با نتایج مدل‌سازی لایه ای مقایسه شد. از دو روش مورد استفاده، الگوریتم نزدیک‌ترین همسایگی به‌طور میانگین با ضریب همبستگی 66% نسبت به‌روش شبکه عصبی مصنوعی با ضریب همبستگی 57% تراوایی مناسب تری برای سازند فهلیان ارائه می‌دهد. روش پیشنهادی در این پژوهش می‌تواند در سازندهای کربناته ناهمگن که وضعیت تفکیک تخلخل خوبی دارند مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimating Permeability in Carbonate Reservoirs Using Artificial Neural Networks and K-Nearest Neighbor Algorithm

نویسندگان [English]

  • Seyed Javad Safavi 1
  • Ramin Maldar 2
1 Petrophysics Department, Pars Petro Zagros Co., Tehran, Iran\Earth Science, Islamic Azad University, Science and Research Campus, Tehran, Iran
2 Petrophysics Department, Pars Petro Zagros Co., Tehran, Iran\Geology Department, Shahid Chamran University, Ahvaz, Iran
چکیده [English]

Permeability is one of the most important petrophysical properties of hydrocarbon reservoirs. Estimating permeability is a challenge that petroleum engineers face, particularly in carbonate reservoirs, especially karst reservoirs, where data on core samples may be lacking. In this study, empirical relationships, regression analysis, artificial neural networks, and the nearest-neighbor algorithm, were employed to estimate permeability in depth intervals where core data were unavailable. The results obtained from these methods were compared with each other and with core measurements. Electrical facies provide intelligent models with the capability to estimate permeability with more details using conventional petrophysical logs. Furthermore, considering that electrical facies analysis is conducted for all wells in the field, the use of optimized intelligent models allows for the estimation of permeability in all wells, leading to more accurate results. Based on the results, artificial neural networks and the nearest-neighbor algorithm performed better compared to the other methods, with correlation coefficients of 2% and 5% higher, respectively, than the other approaches. To optimize the obtained results, permeability estimation using these two methods was incorporated into the framework of electrical facies modeling. Subsequently, the results of facies analysis were compared with the results of layered modeling. Ultimatly, among the two methods used, the nearest-neighbor algorithm, on average, provides a more suitable permeability estimation for the Fahliyan formation with a correlation coefficient of 66% compared to the artificial neural network method with a correlation coefficient of 57%. The proposed method in this study can be applied in heterogeneous carbonate reservoirs with well-defined heterogeneity in porosity distribution.

کلیدواژه‌ها [English]

  • Permeability Estimation
  • Artificial Neural Network
  • Intelligent Algorithm
  • Petrophysical Log
  • Electro-Facies Analysis
  • Effective Porosity
[1]. Lucia, F. J. (2007). Carbonate reservoir characterization: an integrated approach. Springer-Verlag. ##
[2]. Coates, G. R., & Dumanoir, J. L. (1973). A new approach to improved log-derived permeability. In SPWLA Annual Logging Symposium. SPWLA-1973. SPWLA. ##
[3]. Timur, A. (1968). An investigation of permeability, porosity, & residual water saturation relationships for sandstone reservoirs. The Log Analyst, 9(04). ##
[4]. Jamialahmadi, M., & Javadpour, F. G. (2000). Relationship of permeability, porosity and depth using an artificial neural network. Journal of Petroleum Science and Engineering, 26(1), 235-239. doi.org/10.1016/S0920-4105(00)00037-1. ##
[5]. Singh, S. (2005). Permeability prediction using artificial neural network (ANN): A case study of uinta basin. SPE Annual Technical Conference and Exhibition. doi.org/10.2118/99286-STU. ##
[6]. Urang, J. G., Ebong, E. D., Akpan, A. E., & Akaerue, E. I. (2020). A new approach for porosity and permeability prediction from well logs using artificial neural network and curve fitting techniques: A case study of Niger Delta, Nigeria. Journal of Applied Geophysics, 183, 104207. doi.org/10.1016/j.jappgeo.2020.104207 . ##
[7]. Okon, A. N., Adewole, S. E., & Uguma, E. M. (2021). Artificial neural network model for reservoir petrophysical properties: porosity, permeability and water saturation prediction. Modeling Earth Systems and Environment, 7(4), 2373-2390. doi:10.1007/s40808-020-01012-4. ##
[8]. Abdel Azim, R., & Aljehani, A. (2022). Neural network model for permeability prediction from reservoir well logs. Processes, 10(12), 2587. doi.org/10.3390/pr10122587. ##
[9]. Piryonesi, S. M., & El-Diraby, T. E. (2020). Role of data analytics in infrastructure asset management: overcoming data size and quality problems. Journal of Transportation Engineering, Part B: Pavements, 146(2), 04020022. doi.org/doi:10.1061/JPEODX.0000175. ##
[10]. Tibshirani, R., Hastie, T., & Friedman, J. H. (2001). The elements of statistical learning: data mining, inference, and prediction : with 200 full-color Illustrations. Springer. https://books.google.com/books?id=SECjnQAACAAJ. ##
[11]. Shi, X., Cui, Y., Guo, X., Yang, H., Chen, R., Li, T., Li, R., Wang, R., Wang, J., & Meng, L. (2017). Logging facies classification and permeability evaluation: multi-resolution graph based clustering. SPE Annual Technical Conference and Exhibition, https://doi.org/10.2118/187030-MS. ##
[12]. Shakeri, A., & Parham, S. (2013). Reservoir characterization and quality controlling factors of the fahliyan formation located in Southwest Iran. Journal of Sciences, Islamic Republic of Iran, 24(2), 135-148. ##
[13]. Lasemi, Y., & Kondroud, K. N. (2008). Sequence stratigraphic control on prolific HC reservoir development, Southwest Iran. Oil and Gas Journal, 106(1), 34-38. ##
[14]. Huang, Z., Shimeld, J., Williamson, M., & Katsube, J. (1996). Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada. Geophysics, 61(2), 422-436.doi.org/10.1190/1.1443970. ##
[15]. Ye, S. J., & Rabiller, P. (2005). Automated electrofacies ordering. Petrophysics, 46, 409-423. ##
[16]. Mohebian, R., Bagheri, H., Kheirollahi,M., Bahrami, H. (2022). Permeability estimation using an integration of multi-resolution graph-based clustering and rock typing methods in an Iranian Carbonate Reservoir. Journal of Petroleum Science and Technology 11(3): 31, 2021, Pages 49-58. doi:10.22078/JPST.2022.4737.1785. ##