چینه‌نگاری سکانسی سازند سروک در یکی از میادین نفتی جنوب‌‌غرب ایران با استفاده از روش تجزیه فرکانسی نمودارهای پتروفیزیکی توسط تبدیل پیوسته و گسسته موجک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشگاه آزاد اسلامی واحد تبریز، ایران

2 گروه علوم‌زمین، دانشکده علوم طبیعی، دانشگاه تبریز، ایران

3 گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، ایران

چکیده

شناسایی مرزهای سکانسی نقش مهمی در توصیف زمین‌شناسی مخازن نفتی دارد. در این مطالعه، از رویکرد تبدیل موجک پیوسته (CWT) برای تجزیه نمودار اشعه گاما و داده‌های مربوط به تخلخل به مجموعه‌ای از ضرایب موجک درمقیاس‌های مختلف استفاده شده است. تبدیل موجک گسسته (DWT) برای تجزیه فرکانسی نمودار‌های چاه به محتوای کم فرکانس با نام تقریب (A) و محتوای پرفرکانس به نام جزئیات (D) استفاده شده است. این روش با استفاده از مطالعه موردی سازند سروک بالایی در فروافتادگی دزفول در جنوب غرب ایران بررسی شده است. فن‌آوری‌های مختلف تجسم گرافیکی نتایج تبدیل موجک پیوسته به درک بهتر مرزهای سکانس‌های اصلی کمک کرده است. با استفاده از DWT، حداکثر سطح غرقابی از هر تجزیه فرکانسی روی نمودارهای پتروفیزکی شناسایی شد. یک پیک تیز در تمام مولفه‌های A و D مربوط به حداکثر سطح غرقابی (MFS) وجود دارد که به‌طور خاص در ضرایب تقریب پنجم (a5)، تفصیلی پنجم (d5)، تفصیلی چهارم (d4) و تفصیلی سوم (d3) قابل مشاهده است. مرزهای سکانسی به بهترین وجه از محتویات فرکانس پایین سیگنال‌ها، به‌ویژه تقریب پنجم (a5) تشخیص داده شد. به‌طور معمول، فرورفتگی‌های تقریب پنجم مطابق با مرزهای سکانسی است که تخلخل‌های بالاتری در سنگ‌های کربناته ایلام و سروک بالایی ایجاد شده است. از طریق ترکیب هر دو ضریب CWT و DWT، تمایز مؤثرتری از سطوح چینه‌ای حاصل شد. نتایج این مطالعه نشان می‌دهد که تبدیل موجک یک رویکرد موفق، سریع و آسان برای شناسایی مرزهای سکانس اصلی از داده‌های چاه‌پیمایی است. تطابق خوبی بین نتایج حاصل از آنالیز مغزه و نتایج تجزیه داده‌های چاه‌پیمایی با استفاده از رویکرد تبدیل موجک وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sequence Stratigraphy of Sarvak Formation in One of the Southwestern Iran Oilfields using Frequency Decomposition of Petrophysical Logs based on Continuous and Discrete Wavelet Transform

نویسندگان [English]

  • Asbar Abbasi 1
  • Ali Kadkhodaie 2
  • Rahim Mahari 1
  • Reza Moussavi Harami 3
1 Department of Geology, Faculty of Basic Sciences, Islamic Azad University, Tabriz Branch, Iran
2 Earth Sciences Department, Faculty of Natural Science, University of Tabriz, Iran
3 Department of Geology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Iran
چکیده [English]

In this study, a continuous wavelet transform (CWT) approach is used to decompose the gamma-ray and porosity logs into a set of wavelet coefficients at different scales. Moreover, discrete wavelet transform (DWT) was used to decompose the well logs into low-frequency components of the signal called the Approximates (A) and high-frequency components called the Details (D). In addition, this method was investigated using a case study of the Upper Sarvak Formation in Dezful embayment in southwest Iran. Moreover, various graphical visualization techniques of continuous wavelet transform results helped to understand the boundaries of the original sequences better. Also, using DWT, the maximum flooding surface was identified from each frequency analysis of petrophysical logs. There is a sharp peak in all A&D related to the maximum flooding surface (MFS), which is particularly visible in the coefficients of the fifth approximation (a5), the fifth detail (d5), the fourth detail (d4) and the third detail (d3). Moreover, sequence boundaries were best detected from the low-frequency content of the signals, especially the fifth approximation (a5). Typically, the trough of the fifth approximation corresponds to the sequence boundaries, where higher porosities have been developed in the carbonate rocks of Ilam and Upper Sarvak. Through the combination of both CWT and DWT coefficients, a more effective differentiation of stratified surfaces was achieved. Moreover, the results of this study show that the wavelet transform is a successful, fast and easy approach to identify the boundaries of the main sequence from well-logging data. Ultimatly, there is a good agreement between the results of core analysis and the results of well-logging data analysis using the wavelet transform approach.

کلیدواژه‌ها [English]

  • Stratigraphy
  • Wavelet Transform
  • Continuous Wavelet Transform (CWT)
  • Discrete Wavelet Transform (DWT)
  • Sarvak Formation
[1]. Sloss, L. L. (1963). Sequences in the cratonic interior of North America. Geological Society of America Bulletin, 74(2), 93-114. doi.org/10.1130/0016-7606(1963)74[93:SITCIO]2.0.CO;2.##
[2]. Miall, A. D. (2010). The geology of stratigraphic sequences. Springer Science & Business Media. ##
[3]. Catuneanu, O. (2022). Principles of sequence stratigraphy. Newnes. ##
[4]. Climent, L. P. F., Associes, R. R., & Lescar, F. (2003). Sequence Stratigraphy Applied to Log Interpretation: Improving Methodology by Means of Signal Processing Techniques and Outcrop Calibration. ##
[5]. Alvarez, G., Sansó, B., Michelena, R. J., & Jiménez, J. R. (2003). Lithologic characterization of a reservoir using continuous-wavelet transforms. IEEE Transactions on Geoscience and Remote sensing, 41(1), 59-65. ##
[6]. Xiangbo, L., Yanru, G., & Huaqing, L. (2006). The application of wavelet analysis in sequence stratigraphic subdivision of the Yanchang Formation, Ordos Basin. Natural Gas Geoscience, 17(6), 779-782. ##
[7]. Zhang, J., & Song, A. (2010, March). Application of wavelet analysis in sequence stratigraphic division of glutenite sediments. In 2010 International Conference on Challenges in Environmental Science and Computer Engineering, 2, 204-207. IEEE. ##
[8]. Pan, S. Y., Hsieh, B. Z., Lu, M. T., & Lin, Z. S. (2008). Identification of stratigraphic formation interfaces using wavelet and Fourier transforms. Computers & Geosciences, 34(1), 77-92. doi.org/10.1016/j.cageo.2007.01.002. ##
[9]. Tokhmechi, B., Memarian, H., Rasouli, V., Noubari, H. A., & Moshiri, B. (2009). Fracture detection from water saturation log data using a Fourier–wavelet approach. Journal of Petroleum Science and Engineering, 69(1-2), 129-138. doi.org/10.1016/j.petrol.2009.08.005. ##
[10]. Ji, D. W., Li, J., & Lu, G. D. (2013). Application of wavelet transform in high-resolution sequence stratigraphic division. Advanced Materials Research, 772, 823-827. doi.org/10.4028/www.scientific.net/AMR.772.823. ##
[11]. Sepehr, M., & Cosgrove, J. W. (2004). Structural framework of the Zagros fold–thrust belt, Iran. Marine and Petroleum geology, 21(7), 829-843. doi.org/10.1016/j.marpetgeo.2003.07.006. ##
[12]. Cooper, M. (2007). Structural style and hydrocarbon prospectivity in fold and thrust belts: a global review, doi.org/10.1144/GSL.SP.2007.272.01.23. ##
[13]. Sherkati, S., Molinaro, M., de Lamotte, D. F., & Letouzey, J. (2005). Detachment folding in the Central and Eastern Zagros fold-belt (Iran): salt mobility, multiple detachments and late basement control. Journal of Structural Geology, 27(9), 1680-1696. doi.org/10.1016/j.jsg.2005.05.010. ##
[14]. McQuarrie, N. (2004). Crustal scale geometry of the Zagros fold–thrust belt, Iran. Journal of structural Geology, 26(3), 519-535. doi.org/10.1016/j.jsg.2003.08.009. ##
[15]. Chang, S. G., Yu, B., & Vetterli, M. (2000). Adaptive wavelet thresholding for image denoising and compression. IEEE transactions on image processing, 9(9), 1532-1546. ##
[16]. Matlab user’s guide, 2015. Wavelet Transform Toolbox. The Mathworks Inc. ##
[17]. Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE transactions on pattern analysis and machine intelligence, 11(7), 674-693. ##
[18]. Daubechies, I. (1992). Ten lectures on wavelets. Society for industrial and applied mathematics. ##
[19]. Meyer, Y., 1990. Ondelettes et op_erateurs, Tome 1, 215 pp. In: Hermann (Ed.), English translation: Wavelets and Operators. Cambridge Univ. Press. 1993. ##
[20]. Anyiam, O. A., Eradiri, J. N., Mode, A. W., Okeugo, C. G., Okwara, I. C., & Ibemesi, P. O. (2019). Sequence stratigraphic analysis and reservoir quality assessment of an onshore field, Central Swamp Depobelt, Niger Delta Basin, Nigeria. Arabian Journal of Geosciences, 12, 1-19. ##
[21]. Abbasi, A., Kodkhodaie, A., Mahari, R., & Moussavi-Harami, R. (2024). Maximum entropy spectral analysis of gamma ray logs for cyclostratigraphic analysis of the Late Albian-Early Turonian Sarvak Formation in the Anaran exploration block, southwestern Zagros, Iran. Earth Science Informatics, 17(1), 1-20. ##
[22]. Massimo, Z, Octavian, C, Mauro ,C,,(2023). High-resolution sequence stratigraphy of clastic shelves IX: Methods for recognizing maximum flooding conditions in shallow-marine settings. Marine and Petroleum Geology, 156. DOI:10.1016/j.marpetgeo.2023.106468. ##
[23]. Flügel, E., & Munnecke, A. (2010). Microfacies of carbonate rocks: analysis, interpretation and application, 976, 2004. Berlin: springer. ##
[24]. Wilson, J. L. (2012). Carbonate facies in geologic history. Springer Science & Business Media. ##
[25]. Aguilera-Franco, N., & Romano, U. H. (2004). Cenomanian–turonian facies succession in the guerrero–morelos basin, Southern Mexico. Sedimentary Geology, 170(3-4), 135-162. doi.org/10.1016/j.sedgeo.2004.06.005. ##
[26]. Schlager, W. (2005). Carbonate sedimentology and sequence stratigraphy (No. 8). SEPM Soc for Sed Geology. ##
[27]. Reijmer, J. J. G., Schlager, W., Bosscher, H., Beets, C. J., & McNeill, D. F. (1992). Pliocene/Pleistocene platform facies transition recorded in calciturbidites (Exuma Sound, Bahamas). Sedimentary Geology, 78(3-4), 171-179. doi.org/10.1016/0037-0738(92)90017-L. ##
[28]. Esrafili-Dizaji, B., & Rahimpour-Bonab, H. (2013). A review of permo-triassic reservoir rocks in the zagros area, sw iran: influence of the qatar-fars arch. Journal of Petroleum Geology, 36(3), 257-279, doi.org/10.1111/jpg.12555. ##
[29]. Sharland, P. R., Casey, D. M., Davies, R. B., Simmons, M. D., & Sutcliffe, O. E. (2004). Arabian plate sequence stratigraphy–revisions to SP2. GeoArabia, 9(1), 199-214. ##
[30] Omidvar, M., Mehrabi, H., Sajjadi, F., Bahramizadeh-Sajjadi, H., Rahimpour-Bonab, H., & Ashrafzadeh, A. (2014). Revision of the foraminiferal biozonation scheme in Upper Cretaceous carbonates of the Dezful Embayment, Zagros, Iran: Integrated palaeontological, sedimentological and geochemical investigation. Revue de micropaléontologie, 57(3), 97-116. doi.org/10.1016/j.revmic.2014.04.002. ##
[31]. Haq, B.U., Hardenbol, J., Vail, P.R., Stover, L.E., Colin, J.P., Ioannides, N.S., Wright, R.C., Baum, G.R., Gombos, A.M., Pflum, C.E. and Loutit, T.S., (1988). Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. ##
[32]. Sharland, P. R., Casey, D. M., Davies, R. B., Simmons, M. D., & Sutcliffe, O. E. (2004). Arabian plate sequence stratigraphy–revisions to SP2. GeoArabia, 9(1), 199-214. doi.org/10.2113/geoarabia0901199. ##
[33]. Nio, S. D., Brouwer, J. H., Smith, D., de Jong, M., & Böhm, A. R. (2005). Spectral trend attribute analysis: applications in the stratigraphic analysis of wireline logs. First break, 23(4). doi.org/10.3997/1365-2397.23.4.26503. ##
[35]. Sharp, I., Gillespie, P., Morsalnezhad, D., Taberner, C., Karpuz, R., Vergés, J., Horbury, A., Pickard, N., Garland, J. and Hunt, D., (2010). Stratigraphic architecture and fracture-controlled dolomitization of the Cretaceous Khami and Bangestan groups: an outcrop case study, Zagros Mountains, Iran. Geological Society, London, Special Publications, 329(1), 343-396. doi.org/10.1144/SP329.14. ##