[1]. Green, D.W. and G.P. Willhite (1998) Enhanced oil recovery, 1st. editrion, Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers, The USA, Texas, Richardson, 6, 1-545. ISBN: 9781555630775. ##
[2]. Mahani, H., & Thyne, G. (2023). Low-salinity (enhanced) waterflooding in carbonate reservoirs. In Recovery Improvement (pp. 39-107). Gulf Professional Publishing. doi.org/10.1016/B978-0-12-823363-4.00007-8. ##
[3]. Morrow, N., & Buckley, J. (2011). Improved oil recovery by low-salinity waterflooding. Journal of Petroleum Technology, 63(05), 106-112. doi.org/10.2118/129421-JPT. ##
[4]. Mahani, H., Keya, A. L., Berg, S., & Nasralla, R. (2017). Electrokinetics of carbonate/brine interface in low-salinity waterflooding: Effect of brine salinity, composition, rock type, and pH on?-potential and a surface-complexation model. SPE Journal, 22(01), 53-68. doi.org/10.2118/181745-PA. ##
[5]. RezaeiDoust, A., Puntervold, T., Strand, S., & Austad, T. (2009). Smart water as wettability modifier in carbonate and sandstone: A discussion of similarities/differences in the chemical mechanisms. Energy & Fuels, 23(9), 4479-4485. doi.org/10.1021/ef900185q. ##
[6]. Mohammadi, M., & Mahani, H. (2020). Direct insights into the pore-scale mechanism of low-salinity waterflooding in carbonates using a novel calcite microfluidic chip. Fuel, 260, 116374. doi.org/10.1016/j.fuel.2019.116374. ##
[7]. Yousef, A. A., Al-Saleh, S., Al-Kaabi, A., & Al-Jawfi, M. (2011). Laboratory investigation of the impact of injection-water salinity and ionic content on oil recovery from carbonate reservoirs. SPE Reservoir Evaluation & Engineering, 14(05), 578-593. doi.org/10.2118/137634-PA. ##
[8]. Xie, Q., Ma, D., Liu, Q., & Lv, W. (2015). Ion tuning waterflooding in low permeability sandstone: Coreflooding experiments and interpretation by thermodynamics and simulation. In Presentation at the International Symposium of the Society of Core Analysts Held in St. John’s Newfoundland and Labrador, Canada (pp. 16-21). ##
[9]. Song, W., & Kovscek, A. R. (2016). Direct visualization of pore-scale fines migration and formation damage during low-salinity waterflooding. Journal of Natural Gas Science and Engineering, 34, 1276-1283. doi.org/10.1016/j.jngse.2016.07.055. ##
[10]. Morrow, N. R., Tang, G. Q., Valat, M., & Xie, X. (1998). Prospects of improved oil recovery related to wettability and brine composition. Journal of Petroleum Science and Engineering, 20(3-4), 267-276. doi.org/10.1016/S0920-4105(98)00030-8. ##
[11]. Austad, T. (2013). Water-based EOR in carbonates and sandstones: new chemical understanding of the EOR potential using “smart water”. In Enhanced oil recovery Field case studies (pp. 301-335). Gulf Professional Publishing. doi.org/10.1016/B978-0-12-386545-8.00013-0. ##
[12]. Mahani, H., Keya, A. L., Berg, S., Bartels, W. B., Nasralla, R., & Rossen, W. R. (2015). Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates. Energy & Fuels, 29(3), 1352-1367. doi.org/10.1021/ef5023847. ##
[13]. Zhang, P., Tweheyo, M. T., & Austad, T. (2007). Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1-3), 199-208. doi.org/10.1016/j.colsurfa.2006.12.058. ##
[14]. Nasralla, R. A., & Nasr-El-Din, H. A. (2014). Double-layer expansion: is it a primary mechanism of improved oil recovery by low-salinity waterflooding?. SPE Reservoir Evaluation & Engineering, 17(01), 49-59. doi.org/10.2118/154334-PA. ##
[15]. Hiorth, A., Cathles, L. M., & Madland, M. V. (2010). The impact of pore water chemistry on carbonate surface charge and oil wettability. Transport in Porous Media, 85, 1-21. ##
[16]. Fredriksen, S. B., Rognmo, A. U., Sandengen, K., & Fernø, M. A. (2017). Wettability effects on osmosis as an oil-mobilization mechanism during low-salinity waterflooding. Petrophysics, 58(01), 28-35. ##
[17]. Bartels, W. B., Mahani, H., Berg, S., Menezes, R., van der Hoeven, J. A., & Fadili, A. (2017). Oil configuration under high-salinity and low-salinity conditions at pore scale: a parametric investigation by use of a single-channel micromodel. SPE Journal, 22(05), 1362-1373. doi.org/10.2118/181386-PA. ##
[18]. Lashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system. Energy & Fuels, 28(11), 6820-6829. doi.org/10.1021/ef5015692. ##
[19]. Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (2019). Nonmonotonic effects of salinity on wettability alteration and two-phase flow dynamics in PDMS micromodels. Water Resources Research, 55(11), 9826-9837. doi.org/10.1029/2018WR024252. ##
[20]. Bidhendi, M. M., Garcia-Olvera, G., Morin, B., Oakey, J. S., & Alvarado, V. (2018). Interfacial viscoelasticity of crude oil/brine: An alternative enhanced-oil-recovery mechanism in smart waterflooding. SPE Journal, 23(03), 803-818. doi.org/10.2118/169127-PA. ##
[21]. Chávez-Miyauchi, T. E., Firoozabadi, A., & Fuller, G. G. (2016). Nonmonotonic elasticity of the crude oil–brine interface in relation to improved oil recovery. Langmuir, 32(9), 2192-2198. doi.org/10.1021/acs.langmuir.5b04354. ##
[22]. Kar, T., Chávez-Miyauchi, T. E., Firoozabadi, A., & Pal, M. (2020). Improved oil recovery in carbonates by ultralow concentration of functional molecules in injection water through an increase in interfacial viscoelasticity. Langmuir, 36(41), 12160-12167. doi.org/10.1021/acs.langmuir.0c01752. ##
[23]. Khajepour, H., Amiri, H. A. A., & Ayatollahi, S. (2020). Effects of salinity, ion type, and aging time on the crude oil-brine interfacial properties under gravity condition. Journal of Petroleum Science and Engineering, 195, 107896. doi.org/10.1016/j.petrol.2020.107896. ##
[24]. Morin, B., Liu, Y., Alvarado, V., & Oakey, J. (2016). A microfluidic flow focusing platform to screen the evolution of crude oil–brine interfacial elasticity. Lab on a Chip, 16(16), 3074-3081. doi.org/10.1039/C6LC00287K. ##
[25]. Ayirala, S. C., Yousef, A. A., Li, Z., & Xu, Z. (2018). Coalescence of crude oil droplets in brine systems: effect of individual electrolytes. Energy & Fuels, 32(5), 5763-5771. doi.org/10.1021/acs.energyfuels.8b00309. ##
[26]. Golmohammadi, M., Mohammadi, S., Mahani, H., & Ayatollahi, S. (2022). The non-linear effect of oil polarity on the efficiency of low salinity waterflooding: A pore-level investigation. Journal of Molecular Liquids, 346, 117069. doi.org/10.1016/j.molliq.2021.117069. ##
[27]. Moeini, F., Hemmati-Sarapardeh, A., Ghazanfari, M. H., Masihi, M., & Ayatollahi, S. (2014). Toward mechanistic understanding of heavy crude oil/brine interfacial tension: The roles of salinity, temperature and pressure. Fluid Phase Equilibria, 375, 191-200. doi.org/10.1016/j.fluid.2014.04.017. ##
[28]. Namaee-Ghasemi, A., Ayatollahi, S., & Mahani, H. (2023). Insights into the Effects of pore structure, time scale, and injection scenarios on pore-filling sequence and oil recovery by low-salinity waterflooding using a mechanistic DLVO-based pore-scale model. SPE Journal, 28(04), 1760-1776. doi.org/10.2118/214320-PA.##