بررسی تأثیر فرآیندهای دیاژنزی بر واحدهای مخزنی در چارچوب چینه نگاری سکانسی: مخزن آسماری- جهرم، میدان نفتی نرگسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر،‌ تهران، ایران

2 گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران

3 دانشکده زمین‌شناسی، دانشگاه تهران، تهران، ایران

4 شرکت ملی مناطق نفت-خیز جنوب، اهواز، ایران

10.22078/pr.2024.5379.3397

چکیده

مطالعه کیفیت مخازن کربناته نیازمند بررسی دقیق رسوب شناسی و فرآیندهای دیاژنزی مؤثر بر آنها می‌باشد. در این مقاله به ‌منظور درک عوامل کنترل‌کنندة کیفیت مخزنی توالی‌های آسماری-جهرم در میدان نرگسی در چارچوب چینه‌نگاری سکانسی، مطالعات گستردة پتروگرافی جهت شناسایی ریزرخساره‌ها و فرآیندهای دیاژنزی مؤثر بر آنها انجام شد. با مطالعه 209 عدد مقطع نازک میکروسکوپی در چاه NI-06، تعداد 14 ریزرخساره معرفی شد که در زیرمحیط‌های پهنه جزرومدی، لاگون، سد و رمپ میانی در امتداد یک رمپ کربناته هموکلینال نهشته شده‌اند. شواهد پتروگرافی بیانگر وجود دو مرحله دیاژنزی (ائوژنز و مزوژنز) و سه محیط دیاژنزی (دریایی، جوی و تدفینی) در توالی پاراژنزی سازندهای مذکور می‌باشد. براساس نتایج بدست آمده در سازندهای مورد مطالعه مشخص شد که فرآیندهای انحلال و شکستگی از عوامل افزایندة کیفیت مخزنی در واحدهای مخزنی بوده ولی فرآیندهای تراکم، سیمانی‌شدن و انیدریتی‌شدن باعث کاهش کیفیت مخزنی در این سازندها شده‌اند. مطالعات چینه‌نگاری سکانسی به روش سکانس پیشرونده-پسرونده، بررسی مشخصه‌‌های رسوبی و دیاژنزی اولیه و تحلیل تغییرات نگارهای پتروفیزیکی نشان دهنده شش سکانس رسوبی رده سوم در سازندهای آسماری- جهرم در میدان نرگسی است. همچنین نتایج گونه‌های سنگی (روش‌های وینلند، لوسیا، و شاخص منطقه‌ای جریان)، سکانس‌های رسوبی، فرآیندهای دیاژنزی، رخساره‌ها و تغییرات نگارهای پتروفیزیکی بیانگر 8 واحد مختلف (واحدهای مخزنی، سرعت و سدی) در مخزن آسماری-جهرم می‌باشد. تأثیر ریزرخساره‌های رسوبی و تنوع فرآیندهای دیاژنزی در هر یک از واحدها با در نظر گرفتن جایگاه آن‌ها در سکانس‌ها نیز تأییدکننده روند تغییرات مشاهده شده در خصوصیات مخزنی واحدهای شناسایی شده است. به طور کلی واحدهای 1 و 2و 3 سازند  آسماری (بخش فوقانی) در میدان نفتی نرگسی نسبت به سازند جهرم از کیفیت مخزنی بهتری برخوردار است و این امر حاکی از آن است که فرآیندهای دیاژنزی به ویژه شکستگی نقش مهمی در کنترل پتانسیل مخزنی سازند آسماری داشته‌اند. در سازند جهرم در واحد 7 ریزرخساره های گل‌غالب در محیط‌های لاگون و رمپ میانی فراوان هستند. انحلال به فرم تخلخل حفره ای، ریزشکستگی و تخلخل بین بلورین ناشی از دولومیتی شدن مهم‌ترین تأثیر را در بهبود کیفیت این واحد مخزنی داشته‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Diagenetic Processes on Reservoir Units in the Sequence Stratigraphy Framework: The Asmari-Jahrum Reservoir, Nargesi Oil Field

نویسندگان [English]

  • Adeleh Jamalian 1
  • Morteza Asemani 2
  • Yasaman Ahmadi 3
  • Armin Omidpour 4
1 Department of Petroleum Engineering, AmirKabir University of Technology, Tehran, Iran
2 Department of Geology, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran
3 School of Geology, College of Science, University of Tehran, Tehran, Iran
4 National Iranian South Oil Company (NISOC), Ahvaz, Iran
چکیده [English]

The study of reservoir quality in carbonates requires a detailed investigation of sedimentology and diagenesis processes. In this paper, the factors controlling the reservoir quality of Asmari-Jahrum formations from the Nargesi oil field in the framework of sequence stratigraphy were evaluated by a comprehensive petrographic study to identify the microfacies and diagenesis processes. By studying 209 microscopic thin sections in the NI-06 well, 14 microfacies were introduced in the sub-environments of the intertidal zone, lagoon, shoal, and middle ramp, which have deposited along a homoclinal ramp. Petrographic evidence indicates the occurrence of two diagenesis stages (eogenesis and mesogenesis) and three diagenesis environments (marine, meteoric, and burial) in the paragenesis sequence of the studied formations. The obtained results showed that the dissolution and fracturing processes have increased the reservoir quality. Still, the compaction, cementation, and anhydritization processes have decreased the reservoir quality in the studied formations. Sequence stratigraphic studies using the Transgressive-Regressive sequence method, investigation of sedimentary characteristics and early diagenesis, and examining the variations of petrophysical logs show six third-order sedimentary sequences in the Asmari-Jahrum formations from the Nargesi field. Also, the rock types (Wineland, Lucia, and Flow Zone Index), sedimentary sequences, diagenetic processes, facies, and petrophysical logs variations imply 8 different zones (e.g., reservoir, speed, and baffle zones) in the Asmari-Jahrum reservoir. The influence of sedimentary microfacies, the diversity of diagenesis processes in each zone, and considering their position in the sequences corroborate the observed changes trend of the reservoir characteristics in the identified zones. In general, the Asmari Formation in Zones#1, 2, and 3 (upper part) in the Nargesi oil field has a better reservoir quality than the Jahrum Formation, and this indicates that the diagenesis processes, especially fracturing, played a vital role in controlling the reservoir potential of the Asmari Formation. In the Jahrum Formation in Zone 7, mud-dominated microfacies are abundant in the lagoon and middle ramp environments. Dissolution in the form of vuggy porosity, microfracture, and intercrystalline porosity caused by dolomitization has had the most critical effect in improving the quality of this reservoir zone.

کلیدواژه‌ها [English]

  • Reservoir Quality
  • Microfacies
  • Diagenesis
  • Rock Typing
  • Dezful Embayment
[1]. Akbar, M., Vissapragada, B., Alghamdi, A.H., Allen, D., Herron, M., Carnegie, A., Dutta, D., Olesen, J.R., Chourasiya, R.D., Logan, D. and Stief, D., (2000). A snapshot of carbonate reservoir evaluation. Oilfield Review, 12(4), .20-21.##
[2]. Ahr, W. M. (2011). Geology of carbonate reservoirs: the identification, description and characterization of hydrocarbon reservoirs in carbonate rocks. John Wiley & Sons. ##
[3]. Aljuboori FA, Lee JH, Elraies KA, Stephen KD. (2019) Gravity drainage mechanism in naturally fractured carbonate reservoirs; review and application. Energies (Basel), 12:3699. https://doi.org/10.3390/en12193699. ##
[4]. حسین‌زاده، م. و توکلی، و. (1402). بررسی ناهمگنی تخلخل و نفوذپذیری سازند داریان با استفاده از نگار‌های ناهمگنی در یکی از میادین خلیج فارس. پژوهش نفت، 5، 19–3، doi: 10.22078/pr.2023.4982.3221. ##
[5]. ابراهیمی، ه.، کامکار روحانی، ا. و سلیمانی منفرد، م. (1397). معرفی اندیس کیفیت مخزن توسعه‎یافته در توصیف مخازن هیدروکربنی، مطالعه سازند کنگان در یکی از میادین جنوب ایران. پژوهش نفت، 123، 19–3، doi: 10.22078/pr.2018.2935.2372. ##
[6]. Kiani, A., Saberi, M. H., ZareNezhad, B., & Mehmandosti, E. A. (2022). Reservoir zonation in the framework of sequence stratigraphy: A case study from Sarvak Formation, Abadan Plain, SW Iran. Journal of Petroleum Science and Engineering, 208, 109560. doi.org/10.1016/j.petrol.2021.109560. ##
[7]. Tavakoli, V., & Jamalian, A. (2018). Microporosity evolution in Iranian reservoirs, Dalan and Dariyan formations, the central Persian Gulf. Journal of Natural Gas Science and Engineering, 52, 155-165. doi.org/10.1016/j.jngse.2018.01.028. ##
[8]. Mehrabi, H., Karami, F., Fakhar-Shahreza, N., & Honarmand, J. (2023). Pore-type characterization and reservoir zonation of the sarvak formation in the Abadan Plain, Zagros Basin, Iran. Minerals, 13(12), 1464. doi. org/10.3390/min13121464. ##
[9]. Attia, A. M., & Shuaibu, H. (2015). Identification of barriers and productive zones using reservoir characterization. Int. Adv. Res. J. Sci. Eng. Technol, 2(12), 8-23. Doi: 10.17148/IARJSET.2015.21202. ##
[10]. Mehrabi, H., Bahrehvar, M., & Rahimpour-Bonab, H. (2021). Porosity evolution in sequence stratigraphic framework: a case from Cretaceous carbonate reservoir in the Persian Gulf, southern Iran. Journal of Petroleum Science and Engineering, 196, 107699. doi.org/10.1016/j.petrol.2020.107699. ##
[11]. Ringrose, P., & Bentley, M. (2016). Reservoir model design, 2. Berlin, Germany: Springer. ##
[12]. Corbett, P. (2009). Petroleum geoengineering: integration of static and dynamic models. Society of Exploration Geophysicists and European Association of Geoscientists and Engineers. ##
[13]. Radwan, A. E., Wood, D. A., Mahmoud, M., & Tariq, Z. (2022). Gas adsorption and reserve estimation for conventional and unconventional gas resources. In Sustainable geoscience for natural gas subsurface systems, 345-382. Gulf Professional Publishing. doi.org/10.1016/B978-0-323-85465-8.00004-2. ##
[14]. Nabawy, B. S., Abudeif, A. M., Masoud, M. M., & Radwan, A. E. (2022). An integrated workflow for petrophysical characterization, microfacies analysis, and diagenetic attributes of the Lower Jurassic type section in northeastern Africa margin: Implications for subsurface gas prospection. Marine and Petroleum Geology, 140, 105678. doi.org/10.1016/j.marpetgeo.2022.105678. ##
[15]. Zhang, Q., Wu, X. S., Radwan, A. E., Wang, B. H., Wang, K., Tian, H. Y., & Yin, S. (2022). Diagenesis of continental tight sandstone and its control on reservoir quality: A case study of the Quan 3 member of the cretaceous Quantou Formation, Fuxin uplift, Songliao Basin. Marine and Petroleum Geology, 145, 105883. doi.org/10.1016/j.marpetgeo.2022.105883. ##
[16]. Taylor, T.R., Giles, M.R., Hathon, L.A., Diggs, T.N., Braunsdorf, N.R., Birbiglia, G.V., Kittridge, M.G., Macaulay, C.I. and Espejo, I.S., (2010). Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG bulletin, 94(8), 1093-1132. doi.org/10.1306/04211009123. ##
[17]. Radwan, A. E. (2022). Provenance, depositional facies, and diagenesis controls on reservoir characteristics of the middle Miocene Tidal sandstones, Gulf of Suez Rift Basin: Integration of petrographic analysis and gamma-ray log patterns. Environmental Earth Sciences, 81(15), 382. doi.org/10.1007/s12665-022-10502-w. ##
[18]. Jones, R.R., McCaffrey, K.J., Clegg, P., Wilson, R.W., Holliman, N.S., Holdsworth, R.E., Imber, J. and Waggott, S., (2009). Integration of regional to outcrop digital data: 3D visualisation of multi-scale geological models. Computers & Geosciences, 35(1), 4-18. doi.org/10.1016/j.cageo.2007.09.007. ##
[19]. Jeong, J., Al-Ali, A.A., Jung, H., Abdelrahman, A., Dhafra, A., Shebl, H.T., Kang, J., Bonin, A., de Perriere, M.D. and Foote, A., (2017), November. Controls on reservoir quality and reservoir architecture of early cretaceous carbonates in an Abu Dhabi Onshore Field Lekhwair, Kharaib and Lower Shuaiba Formations. In Abu Dhabi International Petroleum Exhibition and Conference (p. D011S001R002). SPE. doi.org/10.2118/188420-MS. ##
[20]. Pittman, E. D. (1992). Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone (1). AAPG bulletin, 76(2), 191-198. doi.org/10.1306/BDFF87A4-1718-11D7-8645000102C1865D. ##
[21]. Coskun, S. B., Wardlaw, N. C., & Haverslew, B. (1993). Effects of composition, texture and diagenesis on porosity, permeability and oil recovery in a sandstone reservoir. Journal of Petroleum Science and Engineering, 8(4), 279-292. doi.org/10.1016/0920-4105(93)90005-Y. ##
[22]. Šperl, J., & Trčková, J. (2008). Permeability and porosity of rocks and their relationship based on laboratory testing. Acta Geodyn Geomater, 5(149), 41-47. ##
[23]. Leila, M., & Moscariello, A. (2019). Seismic stratigraphy and sedimentary facies analysis of the pre-and syn-Messinain salinity crisis sequences, onshore Nile Delta, Egypt: implications for reservoir quality prediction. Marine and Petroleum Geology, 101, 303-321. doi.org/10.1016/j.marpetgeo.2018.12.003. ##
[24]. Kim, J. C., Lee, Y. I., & Hisada, K. I. (2007). Depositional and compositional controls on sandstone diagenesis, the Tetori Group (Middle Jurassic–Early Cretaceous), central Japan. Sedimentary Geology, 195(3-4), 183-202. doi.org/10.1016/j.sedgeo.2006.08.011. ##
[25]. Hassan, A. R., Radwan, A. A., Mahfouz, K. H., & Leila, M. (2023). Sedimentary facies analysis, seismic interpretation, and reservoir rock typing of the syn-rift Middle Jurassic reservoirs in Meleiha concession, north Western Desert, Egypt. Journal of Petroleum Exploration and Production Technology, 13(11), 2171-2195. doi.org/10.1007/s13202-023-01677-4. ##
[26]. Ahr, W. M., & Hammel, B. S. (1999). Identification and mapping of flow units in carbonate reservoirs an example from the happy spraberry (permian) field Garza County, Texas USA. Energy Exploration & Exploitation, 17(3-4), 311-334. doi.org/10.1177/014459879901700. ##
[27]. Ahr, W. M. (2011). Geology of carbonate reservoirs: the identification, description and characterization of hydrocarbon reservoirs in carbonate rocks. John Wiley & Sons. ##
[28]. Abbaszadeh, M., Fujii, H., & Fujimoto, F. (1996). Permeability prediction by hydraulic flow units—theory and applications. SPE Formation Evaluation, 11(04), 263-271. doi.org/10.2118/30158-PA. ##
[29]. Perez, H. H., Datta-Gupta, A., & Mishra, S. (2003, October). The role of electrofacies, lithofacies, and hydraulic flow units in permeability predictions from well logs: a comparative analysis using classification trees. In SPE Annual Technical Conference and Exhibition? SPE-84301. doi.org/10.2118/84301-PA. ##
[30]. Shahvar, M. B., Kharrat, R., & Matin, M. (2010, June). Applying flow zone index approach and artificial neural networks modeling technique for characterizing a heterogeneous carbonate reservoir using dynamic data: Case study of an Iranian reservoir. In SPE Trinidad and Tobago Section Energy Resources Conference? SPE-132898. doi.org/10.2118/132898-MS. ##
[31]. Mahjour, S. K., Al-Askari, M. K. G., & Masihi, M. (2016). Flow-units verification, using statistical zonation and application of Stratigraphic Modified Lorenz Plot in Tabnak gas field. Egyptian Journal of Petroleum, 25(2), 215-220. doi.org/10.1016/j.ejpe.2015.05.018. ##
[32]. Gomes, J. S., Ribeiro, M. T., Strohmenger, C. J., Negahban, S., & Kalam, M. Z. (2008, November). Carbonate reservoir rock typing–the link between geology and SCAL. In Abu Dhabi international petroleum exhibition and conference. SPE-118284. doi.org/10.2118/118284-MS. ##
[33]. Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, D. G., & Keelan, D. K. (1993). Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. In SPE Annual Technical Conference and Exhibition?. SPE-26436. doi.org/10.2118/26436-MS. ##
[34]. Azadivash, A., Shaabani, M., & Mehdipour, V. (2021). Determining hydraulic flow units by using the flow zone indicator method and comparing them with electrofacies and microscopic sections in Sarvak Formation in one of the fields of Abadan plain. Advanced Applied Geology, 11(3), 473-492. Doi: 10.22055/aag.2020.34529.2147. ##
[35]. Salman, O., Al-Fatlawi, O., & Al-Jawad, S. (2023). Reservoir characterization and rock typing of carbonate reservoir in the Southeast of Iraq. The Iraqi Geological Journal, 221-237. ##
[36]. Bhatti, A. A., Ismail, A., Raza, A., Gholami, R., Rezaee, R., Nagarajan, R., & Saffou, E. (2020). Permeability prediction using hydraulic flow units and electrofacies analysis. Energy Geoscience, 1(1-2), 81-91. doi.org/10.1016/j.engeos.2020.04.003. ##
[37]. Masalmeh, S. K., Wei, L., Hillgartner, H., Al-Mjeni, R., & Blom, C. (2012, November). Developing high resolution static and dynamic models for waterflood history matching and EOR evaluation of a Middle Eastern carbonate reservoir. In Abu Dhabi International Petroleum Exhibition and Conference. SPE-161485. doi.org/10.2118/161485-MS. ##
[38]. Barakat, M. K., Azab, A., & Michael, N. (2022). Reservoir characterization using the seismic reflection data: Bahariya Formation as a case study Shushan Basin, North Western Desert, Egypt. Journal of Petroleum and Mining Engineering, 24(1), 5-15. doi.org/10.21608/jpme.2022.110315.1107. ##
[39]. Leverett, M. (1941). Capillary behavior in porous solids. Transactions of the AIME, 142(01), 152-169. doi.org/10.2118/941152-G. ##
[40]. El Adl, H., Leila, M., Ahmed, M. A., Anan, T., & El-Shahat, A. (2021). Integrated sedimentological and petrophysical rock-typing of the Messinian Abu Madi formation in South Batra gas field, onshore Nile Delta, Egypt. Marine and Petroleum Geology, 124, 104835. doi.org/10.1016/j.marpetgeo.2020.104835. ##
[41]. Mohseni, H., Hassanvand, V., & Homaie, M. (2016). Microfacies analysis, depositional environment, and diagenesis of the Asmari–Jahrum reservoir in Gulkhari oil field, Zagros basin, SW Iran. Arabian Journal of Geosciences, 9, 1-21. doi.org/10.1007/s12517-015-2130-y. ##
[42]. Stöcklin, J. (1968). Structural history and tectonics of Iran: a review. AAPG Bulletin, 52(7), 1229-1258. doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D. ##
[43]. Murris, R. J. (1980). Middle East: stratigraphic evolution and oil habitat. AAPG Bulletin, 64(5), 597-618. doi.org/10.1306/2F918A8B-16CE-11D7-8645000102C1865D. ##
[44]. James, G. A., & Wynd, J. G. (1965). Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG Bulletin, 49(12), 2182-2245. doi.org/10.1306/A663388A-16C0-11D7-8645000102C1865D. ##
[45]. Leturmy, P., & Robin, C. (2010). Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic-Cenozoic: introduction. 330, (1), 1-4. London: The Geological Society of London. doi.org/10.1144/SP330. ##
[46]. Bordenave ML, Burwood R. (1995) The Albian Kazhdumi Formation of the Dezful Embayment, Iran: one of the most efficient petroleum generating systems. Petroleum Source Rocks, In: Katz B.J. (ed) Petroleum Source Rocks. Casebooks in Earth Sciences. Springer, Berlin, Heidelberg, p. 183–207. https://doi.org/10.1007/978-3-642-78911-3_11. ##
[47]. Bordenave, M. L., & Burwood, R. (1995). The Albian Kazhdumi Formation of the Dezful Embayment, Iran: one of the most efficient petroleum generating systems. In Petroleum Source Rocks. 183-207. Berlin, Heidelberg: Springer Berlin Heidelberg. doi.org/10.1016/j.jafrearsci.2020.104047. ##
[48]. Mehrabi, H., Zamanzadeh, S. M., Sefidari, E., Amrai, J., Naderi, M., & Goudarzi, B. (2021). Reconstruction of depositional environment of sarchahan formation (Silurian) in the Persian Gulf. Geopersia, 11(2), 431-449. doi: 10.22059/geope.2021.308453.648574. ##
[49]. Esrafili-Dizaji, B., & Rahimpour-Bonab, H. (2019). Carbonate reservoir rocks at giant oil and gas fields in SW Iran and the adjacent offshore: a review of stratigraphic occurrence and poro-perm characteristics. Journal of Petroleum Geology, 42(4), 343-370. ##
[50]. Dunham, R. J. (1962). Classification of carbonate rocks according to depositional textures. ##
[51]. Embry, A. F., & Klovan, J. E. (1971). A late Devonian reef tract on northeastern Banks Island, NWT. Bulletin of Canadian petroleum geology, 19(4), 730-781. doi.org/10.35767/gscpgbull.19.4.730. ##
[52]. Flügel, E., & Munnecke, A. (2010). Microfacies of carbonate rocks: analysis, interpretation and application. 976, 2004. Berlin: springer. ##
[53]. Adabi, M. H. (2009). Multistage dolomitization of upper jurassic mozduran formation, Kopet-Dagh Basin, ne Iran. Carbonates and Evaporites, 24(1), 16-32. doi.org/10.1007/BF03228054. ##
[54]. Warren, J. K. (2016). Evaporites: A geological compendium. Springer. ##
[55]. Rasser, M. W., Scheibner, C., & Mutti, M. (2005). A paleoenvironmental standard section for Early Ilerdian tropical carbonate factories (Corbieres, France; Pyrenees, Spain). Facies, 51, 218-232. doi.org/10.1007/s10347-005-0070-9. ##
[56]. Burchette, T. P., & Wright, V. P. (1992). Carbonate ramp depositional systems. Sedimentary Geology, 79(1-4), 3-57. doi.org/10.1016/0037-0738(92)90003-A. ##v
[57]. Vaziri-Moghaddam, H., Seyrafian, A., Taheri, A., & Motiei, H. (2010). Oligocene-Miocene ramp system (Asmari Formation) in the NW of the Zagros basin, Iran: Microfacies, paleoenvironment and depositional sequence. Revista mexicana de ciencias geológicas, 27(1), 56-71. ISSN 2007-2902versión impresa ISSN 1026-8774. ##
[58]. Cen, X. C., & Salad Hersi, O. (2006). A revised lithostratigraphic framework and characteristics of the Upper Devonian Duperow Formation, southeastern Saskatchewan. Summary of Investigations, 1, 2006-4. ##
[59]. Moosavizadeh, S. M. A., Mahboubi, A., Moussavi-Harami, R. E. Z. A., Kavoosi, M. A., & Schlagintweit, F. (2015). Sequence stratigraphy and platform to basin margin facies transition of the Lower Cretaceous Dariyan Formation (northeastern Arabian Plate, Zagros fold-thrust belt, Iran). Bulletin of Geosciences, 90(1). doi.org/ 10.3140/bull.geosci.1413. ##
[60]. Vaziri-Moghaddam, H., Kimiagari, M., & Taheri, A. (2006). Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran. Facies, 52(1), 41-51. doi.org/10.1007/s10347-005-0018-0. ##
[61]. Hottinger, L. (2007). Revision of the foraminiferal genus Globoreticulina Rahaghi, 1978, and of its associated fauna of larger foraminifera from the late Middle Eocene of Iran. Carnets de Géologie/Notebooks on Geology, (A06), 1-51. ##
[62]. Geel, T. (2000). Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 155(3-4), 211-238. doi.org/10.1016/S0031-0182(99)00117-0. ##
[63]. Romero, J., Caus, E., & Rosell, J. (2002). A model for the palaeoenvironmental distribution of larger foraminifera based on late Middle Eocene deposits on the margin of the South Pyrenean basin (NE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 179(1-2), 43-56. doi.org/10.1016/S0031-0182(01)00406-0. ##
[64]. Rahimpour-Bonab, H. (2007). A procedure for appraisal of a hydrocarbon reservoir continuity and quantification of its heterogeneity. Journal of Petroleum Science and Engineering, 58(1-2), 1-12. doi.org/10.1016/j.petrol.2006.11.004. ##
[65]. Gregg, J. M., & Sibley, D. F. (1984). Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Research, 54(3), 908-931. doi.org/10.1306/212F8535-2B24-11D7-8648000102C1865D. ##
[66]. Aqrawi, A.A.M., Keramati, M., Ehrenberg, S.N., Pickard, N., Moallemi, A., Svånå, T., Darke, G., Dickson, J.A.D. & Oxtoby, N.H., (2006). THE origin of dolomite in the asmari formation (oligocene-lower miocene), dezful embayment, SW IRAN. Journal of Petroleum Geology, 29(4). ##
[67]. Omidpour, A., Mahboubi, A., Moussavi-Harami, R., & Rahimpour-Bonab, H. (2022). Effects of dolomitization on porosity–Permeability distribution in depositional sequences and its effects on reservoir quality, a case from Asmari Formation, SW Iran. Journal of Petroleum Science and Engineering, 208, 109348. doi.org/10.1016/j.petrol.2021.109348. ##
[68]. Tavakoli, V. (2018). Geological core analysis: Application to reservoir characterization, 99. Springer International Publishing. ##
[69]. Haq, B. U., Hardenbol, J. A. N., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156-1167. doi.org/10.1126/science.235.4793.1156. ##
[70]. Bhattacharya, S., Byrnes, A. P., Watney, W. L., & Doveton, J. H. (2008). Flow unit modeling and fine-scale predicted permeability validation in Atokan sandstones: Norcan East field, Kansas. AAPG Bulletin, 92(6), 709-732. doi.org/10.1306/01140807081##
[71]. Porras, J. C., & Campos, O. (2001, March). Rock typing: a key approach for petrophysical characterization and definition of flow units, Santa Barbara Field, Eastern Venezuela Basin. In SPE Latin America and Caribbean Petroleum Engineering Conference, SPE-69458. doi.org/10.2118/69458-MS. ##
[72]. Ebanks WJ. (1987) Geology in enhanced oil recovery. ##
[73]. Tiab, D., & Donaldson, E. C. (2024). Petrophysics: theory and practice of measuring reservoir rock and fluid transport properties. Elsevier. ##
[74]. Uguru, C. I., Onyeagoro, U. O., Lin, J., Okkerman, J., & Sikiru, I. O. (2005, August). Permeability prediction using genetic unit averages of flow zone indicators (FZIs) and neural networks. In SPE Nigeria Annual International Conference and Exhibition. SPE-98828). doi.org/10.2118/98828-MS. ##
[75]. Gunter, G. W., Finneran, J. M., Hartmann, D. J., & Miller, J. D. (1997, October). Early determination of reservoir flow units using an integrated petrophysical method. In SPE Annual Technical Conference and Exhibition?, SPE-38679. doi.org/10.2118/38679-MS. ##
[76]. Lucia, F. J. (2002). Integrated outcrop and subsurface studies of the interwell environment of carbonate reservoirs: Clear Fork (Leonardian-age) reservoirs, West Texas and New Mexico. University of Texas (US). ##
[77]. Embry, A. F. (1995). Sequence boundaries and sequence hierarchies: problems and proposals. In Norwegian petroleum society special publications. 5, (1-11). Elsevier. doi.org/10.1016/S0928-8937(06)80059-7. ##
[78]. Enayati–Bidgoli, A. H., & Rahimpour–Bonab, H. (2016). A geological based reservoir zonation scheme in a sequence stratigraphic framework: A case study from the Permo–Triassic gas reservoirs, Offshore Iran. Marine and Petroleum Geology, 73, 36-58. doi.org/10.1016/j.marpetgeo.2016.02.016. ##