[1]. Dayev, Z. A. (2020). Application of artificial neural networks instead of the orifice plate discharge coefficient. Flow Measurement and Instrumentation, 71, 101674. doi.org/10.1016/j.flowmeasinst.2019.101674.##
[2]. Bikmukhametov, T., & Jäschke, J. (2020). First principles and machine learning virtual flow metering: a literature review. Journal of Petroleum Science and Engineering, 184, 106487. doi.org/10.1016/j.petrol.2019.106487. ##
[3]. Mercante, R., & Netto, T. A. (2022). Virtual flow predictor using deep neural networks. Journal of Petroleum Science and Engineering, 213, 110338. doi.org/10.1016/j.petrol.2022.110338.##
[4]. AL-Qutami, T. A., Ibrahim, R., Ismail, I., & Ishak, M. A. (2018). Virtual multiphase flow metering using diverse neural network ensemble and adaptive simulated annealing. Expert Systems with Applications, 93, 72-85. doi.org/10.1016/j.eswa.2017.10.014. ##
[5]. Al-Qutami, T. A., Ibrahim, R., & Ismail, I. (2017, September). Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application. In 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (pp. 304-309). IEEE. ##
[6]. Ahmadi, M. A., Ebadi, M., Shokrollahi, A., & Majidi, S. M. J. (2013). Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Applied Soft Computing, 13(2), 1085-1098. doi.org/10.1016/j.asoc.2012.10.009 ##
[7]. Bikmukhametov, T., & Jäschke, J. (2019). Oil production monitoring using gradient boosting machine learning algorithm. Ifac-Papersonline, 52(1), 514-519. doi.org/10.1016/j.ifacol.2019.06.114.##
[8]. Góes, M. R. R., Guedes, T. A., d’Avila, T. C., Vieira, B. F., Ribeiro, L. D., de Campos, M. C., & Secchi, A. R. (2021). Virtual flow metering of oil wells for a pre-salt field. Journal of Petroleum Science and Engineering, 203, 108586. doi.org/10.1016/j.petrol.2021.108586.##
[9]. Hotvedt, M., Grimstad, B., Ljungquist, D., & Imsland, L. (2022). On gray-box modeling for virtual flow metering. Control Engineering Practice, 118, 104974. doi.org/10.1016/j.conengprac.2021.104974. ##
[10]. AlAjmi, M. D., Alarifi, S. A., & Mahsoon, A. H. (2015, March). Improving multiphase choke performance prediction and well production test validation using artificial intelligence: a new milestone. In SPE Digital Energy Conference and Exhibition (p. D031S022R003). SPE. doi.org/SPE-173394-MS. ##
[11]. Sandnes, A. T., Grimstad, B., & Kolbjørnsen, O. (2021). Multi-task learning for virtual flow metering. Knowledge-Based Systems, 232, 107458. doi.org/10.1016/j.knosys.2021.107458.##
[12]. Al-Jasmi, A., Goel, H.K., Nasr, H., Querales, M., Rebeschini, J., Villamizar, M.A., Carvajal, G.A., Knabe, S., Rivas, F. and Saputelli, L., (2013), June. Short-term production prediction in real time using intelligent techniques. In SPE Europec featured at EAGE Conference and Exhibition? (pp. SPE-164813). SPE. doi.org/10.2118/164813-MS.##
[13]. Denney, T., Wolfe, B., & Zhu, D. (2013, March). Benefit evaluation of keeping an integrated model during real-time ESP operations. In SPE Digital Energy Conference and Exhibition (pp. SPE-163704). SPE. doi.org/10.2118/163704-MS.##
[14]. Camilleri, L. A., Banciu, T., Ditoiu, G., & Petrom, S. A. (2010, March). First Installation of 5 ESPs Offshore Romania-A Case Study and Lessons Learned. In SPE Intelligent Energy International Conference and Exhibition (pp. SPE-127593). SPE. doi: 10.2118/127593-MS.##
[15]. Rao, H., Shi, X., Rodrigue, A.K., Feng, J., Xia, Y., Elhoseny, M., Yuan, X. and Gu, L., (2019). Feature selection based on artificial bee colony and gradient boosting decision tree. Applied Soft Computing, 74, 634-642.doi.org/10.1016/j.asoc.2018.10.036.##
[16]. Dudani, S. A. (1978). The distance-weighted k-nearest neighbor rule. IEEE trans. on systems, man and cybernetics, 8(4), 311-313.##
[17]. Jóźwik, A. (1983). A learning scheme for a fuzzy k-NN rule. Pattern Recognition Letters, 1(5-6), 287-289. ##
[18]. Song, Y., Liang, J., Lu, J., & Zhao, X. (2017). An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing, 251, 26-34. doi.org/10.1016/0167-8655(83)90064-8.##
[19]. Devroye, L., Gyorfi, L., Krzyzak, A., & Lugosi, G. (1994). On the strong universal consistency of nearest neighbor regression function estimates. The Annals of Statistics, 22(3), 1371-1385. doi.org/10.1214/aos/1176325633.##
[20]. Xu, M., Watanachaturaporn, P., Varshney, P. K., & Arora, M. K. (2005). Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 97(3), 322-336. doi.org/10.1016/j.rse.2005.05.008.##
[21]. Breiman, L. (2017). Classification and regression trees. Routledge. 1st Edition. 25 October 2017. New York. Chapman and Hall/CRC. doi.org/10.1201/9781315139470.##