[1]. Daneshy,A.(2001).Water management from production to disposal, Daneshy Consultants International, presented Oct. 18, 2001 – West Coast PTTC Workshop.##
[2]. Liu, Y., Lu, H., Li, Y., Xu, H., Pan, Z., Dai, P., ... & Yang, Q. (2021). A review of treatment technologies for produced water in offshore oil and gas fields. Science of the Total Environment, 775, 145485. doi.org/10.1016/j.scitotenv.2021.145485. ##
[3]. صرافزاده، م. ح.، رضایی، ب. و نخعی، ع. (2016). استفاده مجدد از آب تولیدی در میادین نفت و گاز. نشریه علمی فرآیند نو، 11(54)، 15-5، 20.1001.1.17356466.1395.11.54.1.5:doi. ##
[4]. غلامزاده، م. ا.، ابدالی لرکی، م.، جهاندیده، ن.، و هاشمی، پ. (1387). مدیریت و دفع آب همراه تولیدی از مخازن نفت و گاز و راهکارهای مناسب زیستمحیطی. همایش زمین شناسی کاربردی و محیط زیست. https://sid.ir/paper/811838/fa##
[5]. حسنزاده، م.،گرامی، ش. و پرهاموند، م. ه. (2017). بررسی پدیده مخروطی شدن آب در یکی از مخازن گازی شکافدار ایران. پژوهش نفت 27(2-96) 183-195. ##
[6]. Zahedzadeh, M., Karambeigi, M. S., Roayaei, E., Emadi, M. A., Radmehr, M., Gholamianpour, H., Ashoori, S. & Shokrollahzadeh, S. (2014). Comprehensive management of mineral scale deposition in carbonate oil fields–A case study. Chemical Engineering Research and Design, 92(11), 2264-2272. doi.org/10.1016/j.cherd.2014.03.014. ##
[7]. Taheri, A., Zahedzadeh, M., Masoudi, R., Ataei, A., Roayaei, E., & Fakhri, H. (2011). Simulation and experimental studies of mineral scale formation effects on performance of Sirri-C oil field under water injection.[8]. Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2-3), 530-551. doi.org/10.1016/j.jhazmat.2009.05.044. ##
[9]. Igunnu, E. T., & Chen, G. Z. (2014). Produced water treatment technologies. International journal of low-carbon technologies, 9(3), 157-177. doi.org/10.1093/ijlct/cts049. ##
[10]. Bailey, B., Crabtree, M., Tyrie, J., Elphick, J., Kuchuk, F., Romano, C., & Roodhart, L. (2000). Water control. Oilfield review, 12(1), 30-51. ##
[11]. Veil, J. A., & Clark, C. E. (2009). Produced water volumes and management practices. US Department of Energy Technology Laboratory, 7. ##
[12]. Cañas-Marín, W. A., & Sánchez-Pérez, A. P. (2020). Prediction of live formation water densities from petroleum reservoirs with pressure-dependent seawater density correlations. Dyna, 87(213), 165-172. ##
[13]. Scanlon, B. R., Reedy, R. C., Xu, P., Engle, M., Nicot, J. P., Yoxtheimer, D., Yang, Q. & Ikonnikova, S. (2020). Can we beneficially reuse produced water from oil and gas extraction in the US. Science of The Total Environment, 717, 137085. ##
[14]. Hill, F., Monroe, S., & Mohanan, R. (2012). Water management-An increasing trend in the oil and gas industry. In SPE/EAGE European Unconventional Resources Conference and Exhibition. OnePetro. ##
[15]. El-Karsani, K. S., Al-Muntasheri, G. A., & Hussein, I. A. (2014). Polymer systems for water shutoff and profile modification: a review over the last decade. SPE Journal, 19(01), 135-149. ##
[16]. Permana, D., Fakhrizal, F., & Nurwibowo, M. P. (2013, October). Selection Criteria for Successful Water Shut-Off Treatment-Brown Field Success Story. In SPE Asia Pacific Oil and Gas Conference and Exhibition (pp. SPE-165753). SPE. ##
[17]. Mennella, A., Chiappa, L., Lockhart, T. P., & Burrafato, G. (1999, May). Candidate and chemical selection rules for water shutoff polymer treatments. In SPE European Formation Damage Conference and Exhibition (pp. SPE-54736). SPE. ##
[18]. Joseph, A., & Ajienka, J. A. (2010, July). A review of water shutoff treatment strategies in oil fields. In SPE Nigeria Annual International Conference and Exhibition (pp. SPE-136969). SPE. ##
[19]. Dubinsky, G., Andreev, V., & Fedorov, K. (2017, October). Comprehensive selection of reagents and technologies for shut off in gas producers. In SPE Russian Petroleum Technology Conference? (p. D033S033R004). SPE. ##
[20]. DeRosa, S. E., & Allen, D. T. (2016). Impact of New manufacturing technologies on the petrochemical industry in the United States: A methane-to-aromatics case study. Industrial & Engineering Chemistry Research, 55(18), 5366-5372. ##
[21]. اثباتی، ح.، کریمیان، ا. ه و آقاپور، ح. (1395). آشنایی با مبانی و الگوهای تدوین استراتژی تکنولوژی: همراه با مطالعه موردی در سه حوزه صنعتی، تهران: نشر آینده پژوه. ##
[22]. Shehabudeen, N., Probert, D., and Phaal, R. (2006) From Theory to Practice: Challenges in Operationalizing a Technology Selection Framework Technovation, 26, 324–335. doi.org/10.1016/j.technovation.2004.10.017. ##
[23]. آراستی، م. ر.، کریمپور کلو، ا. و فیروزفر، ب. (1394). طراحی مدلی برای ارزیابی فنآوری در گستره شبکه زنجیره تأمین یک بنگاه مادر؛ سیاست علم و فنآوری، 8(4)، 41-55. dor 20.1001.1.20080840.1394.8.4.5.6. ##
[24]. Coates, J. F. (1976). The role of formal models in technology assessment. Technological Forecasting and Social Change, 9(1-2), 139-190. ##
[25]. Nezhad, A. J., Nikoukar, G. H., & Habibi, M. (2013). A suitable model for formulating technology strategy (case study: A car parts manufacturer in iran khodro company). International Journal of Learning and Development, 3(4), 96-107: dx.doi.org/10.5296/ijld.v3i4.4246. ##
[26]. Sadeghi Moghadam, M. R., Noferesti, R., & Farahani, A. (2022). Analyzing the Capability-attractiveness Matrix for Emerging Technologies in Iran’s Humanitarian Supply Chain. Industrial Management Journal, 14(4), doi: 565-594. 10.22059/IMJ.2022.343062.1007944. ##
[27]. Daim, T., Yates, D., Peng, Y., & Jimenez, B. (2009). Technology assessment for clean energy technologies: The case of the Pacific Northwest. Technology in Society, 31(3), 232-243. doi.org/10.1016/j.techsoc.2009.03.009. ##
[28]. Ebrahimi, M., Baerz, A. M., Hosseini, S. H. K., & Azar, A. (2013). A new model of petrochemical technology strategic planning. International Journal of Business Administration, 4(2), 57. dx.doi.org/10.5430/ijba.v4n2p57. ##
[29]. Dabbaghi, A. (2020). Utilization of grey madm methodology in technology attractiveness assessment: a case study in upstream industry. Independent Journal of Management & Production, 11(7), 2872-2887. doi.org/10.14807/ijmp.v11i7.1015. ##
[30]. Mohammadzadeh, S., Mokhtarzadeh, N., & Rasaei, M. R. (2021). Strategic technologies selection for oil production: An application of attractiveness-capability matrix of technology. Iranian Journal of Oil and Gas Science and Technology, 10(1), 66-79. doi.org/10.22050/ijogst.2020.231146.1551. ##
[31]. Sydansk, R. D., & Romero-Zeron, L. (2011). Reservoir conformance improvement: an interdisciplinary approach to topics in petroleum engineering and geosciences. Richardson: Society of Petroleum Engineers. ##
[32]. Seright, R. S., Lane, R. H., & Sydansk, R. D. (2003). A strategy for attacking excess water production. SPE Production & Facilities, 18(03), 158-169. doi.org/10.2118/84966-PA. ##
[33]. Taha, A., & Amani, M. (2019). Overview of water shutoff operations in oil and gas wells; chemical and mechanical solutions. ChemEngineering, 3(2), 51. doi.org/10.3390/chemengineering3020051. ##
[34]. Kabir, A. H. (2001, October). Chemical Water & Gas Shutoff Technology–An Overview. In SPE International Improved Oil Recovery Conference in Asia Pacific (pp. SPE-72119). SPE. doi.org/10.2118/72119-MS. ##
[35]. Norman, C., Turner, B., Romero, J. L., Centeno, G., & Muruaga, E. (2006). A review of over 100 polymer gel injection well conformance treatments in Argentina and Venezuela: Design, Field implementation, and Evaluation. In SPE International Oil Conference and Exhibition in Mexico (pp. SPE-101781). SPE. doi.org/10.2118/101781-MS. ##
[36]. Willhite, G. P., & Pancake, R. E. (2008). Controlling water production using gelled polymer systems. SPE Reservoir Evaluation & Engineering, 11(03), 454-465. ##
[37]. Jain, P., Sharma, V., Raju, A. V., & Patra, S. K. (2000). Polymer gel squeeze for gas shutoff, water shutoff and injection profile improvement in bombay high pilot wells. In SPE Asia Pacific Oil and Gas Conference and Exhibition (pp. SPE-64437). SPE. ##
[38]. Aalaie, J., Vasheghani-Farahani, E., Rahmatpour, A., & Semsarzadeh, M. A. (2008). Effect of montmorillonite on gelation and swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions. European polymer journal, 44(7), 2024-2031. doi.org/10.1016/j.eurpolymj.2008.04.031. ##
[39]. Aalaie, J., Alvand, E., Hemmati, M., & Sajjadian, V. A. (2015). Preparation and probing of the steady shear flow and viscoelastic properties of weakly crosslinked hydrogels based on sulfonated polyacrylamide for oil recovery applications. Polymer Science Series A, 57, 680-687. doi.org/10.1134/S0965545X15050016. ##
[40]. Sydansk, R. D., & Seright, R. S. (2007). When and where relative permeability modification water-shutoff treatments can be successfully applied. SPE Production & Operations, 22(02), 236-247. doi.org/10.2118/99371-PA. ##
[41]. Bai, B., Li, L., Liu, Y., Liu, H., Wang, Z., & You, C. (2007). Preformed particle gel for conformance control: factors affecting its properties and applications. SPE Reservoir Evaluation & Engineering, 10(04), 415-422. doi.org/10.2118/89389-PA##
[42]. Zaitoun, A., Kohler, N., Bossie-Codreanu, D., & Denys, K. (1999). Water shutoff by relative permeability modifiers: lessons from several field applications. In SPE Annual Technical Conference and Exhibition? (pp. SPE-56740). SPE. doi.org/10.2118/56740-MS. ##
[43]. Coste, J. P., Liu, Y., Bai, B., Li, Y., Shen, P., Wang, Z., & Zhu, G. (2000). In-Depth Fluid Diversion by Pre-Gelled Particles. Laboratory Study and Pilot Testing. In SPE Improved Oil Recovery Conference (pp. SPE-59362). SPE.SPE 59362.,2000. doi.org/10.2118/59362-MS. ##
[44]. Stavland, A., Andersen, K. I., Sandoey, B., Tjomsland, T., & Mebratu, A. A. (2006). How to apply a blocking gel system for bullhead selective water shutoff: from laboratory to field. In SPE Improved Oil Recovery Conference (pp. SPE-99729). SPE. doi.org/10.2118/99729-MS. ##
[45]. Zaitoun, A., Tabary, R., Rousseau, D., Pichery, T., Nouyoux, S., Mallo, P., & Braun, O. (2007). Using microgels to shut off water in a gas storage well. In SPE International Conference on Oilfield Chemistry (pp. SPE-106042). SPE. doi.org/10.2118/106042-MS. ##
[46]. Ogunberu, A. L., & Asghari, K. (2005). Water permeability reduction under flow-induced polymer adsorption. Journal of Canadian Petroleum Technology, 44(11). doi.org/10.2118/05-11-06. ##
[47]. Mishra, S., Bera, A., & Mandal, A. (2014). Effect of polymer adsorption on permeability reduction in enhanced oil recovery. Journal of Petroleum Engineering, 2014. doi.org/10.1155/2014/395857. ##
[48]. Zitha, P. L. J., Van Os, K. G. S., & Denys, K. F. J. (1998). Adsorption of linear flexible polymers during laminar flow through porous media. In SPE Improved Oil Recovery Conference (pp. SPE-39675). SPE. doi.org/10.2118/39675-MS. ##
[49]. Cohen, Y., & Christ, F. R. (1986). Polymer retention and adsorption in the flow of polymer solutions through porous media. SPE Reservoir Engineering, 1(02), 113-118. doi.org/10.2118/12942-PA. ##
[50]. Sodeifian, G., Daroughegi, R., & Aalaie, J. (2015). Study of adsorptive behavior of sulfonated polyacrylamide onto carbonate rock particles to enhance oil recovery. Korean Journal of Chemical Engineering, 32, 2484-2491. doi.org/10.1007/s11814-015-0112-0. ##
[51]. Wang, W., Liu, Y., & Gu, Y. (2003). Application of a novel polymer system in chemical enhanced oil recovery (EOR). Colloid and Polymer Science, 281, 1046-1054. doi.org/10.1007/s00396-003-0873-6.
[52]. Urdaneta, J. A., Arroyave, J. M., Jones, P., Amaya, J. L., Coral, A., & Hernandez, H. (2014, May). Novel gas shutoff resin system for well abandonment applications in Colombia: a case history. In SPE Latin America and Caribbean Petroleum Engineering Conference (p. D011S003R001). SPE. doi: 10.2118/169400-ms. ##
[53]. Gogarty, W. B. (1967). Rheological properties of pseudoplastic fluids in porous media. Society of Petroleum Engineers Journal, 7(02), 149-160. doi.org/10.2118/1566-A. ##
[54]. Alvarado, D., & Marsden Jr, S. S. (1979). Flow of oil-in-water emulsions through tubes and porous media. Society of Petroleum Engineers Journal, 19(06), 369-377. doi.org/10.2118/5859-PA. ##
[55]. Raiders, R. A., Maher, T. F., Knapp, R. M., & McInerney, M. J. (1986). Selective plugging and oil displacement in crossflow core systems by microrganisms. In SPE Annual Technical Conference and Exhibition (pp. SPE-15600). SPE. doi.org/10.2118/15600-MS. ##
[56]. Harwell, J. H., & Scamehorn, J. F. (1988). U.S. Patent No. 4,745,976. Washington, DC: U.S. Patent and Trademark Office. ##
[57]. McAuliffe, C. D. (1973). Oil-in-water emulsions and their flow properties in porous media. Journal of Petroleum Technology, 25(06), 727-733. doi.org/10.2118/4369-PA##
[58]. کریمی، م.، پروازدوانی، م.، مومنی، ع. ر.، ندری پری، م.، مطهری، س. م.، صفری بیدختی، م.، فیروزینیا، ح. (1397). افزایش تولید چاه محور: مشکلات تولید، علت یابی و ارائه راه حلها، نشر ستایش. ##
[59]. سلیمانی، پ. (2017). حفاری افقی در آمریکای شمالی و خاورمیانه، ماهنامه تخصصی نفت و انرژی چشم انداز نفت. ##
[60]. حسنآبادی، م.، بهشتیاصل، ن.، شمساپور، ن. (1395). چاه و میدان هوشمند و کاربردهای آن در صنعت نفت ایران، معاونت پژوهشهای زیربنایی و امور تولیدی، دفتر مطالعات انرژی صنعت و معدن، کد موضوعی 310، 15111. ##
[61]. سریخانی، م. ح.، و عاملی، ف. (1398). مروری بر فنآوری جداسازی آب از نفت در ته چاه. مهندسی شیمی ایران، 18(106 )، 6-17. SID. sid.ir/paper/379421/fa. ##
[62]. Jolly, D. R. (2012). Development of a two-dimensional scale for evaluating technologies in high-tech companies: An empirical examination. Journal of Engineering and Technology Management, 29(2), 307-329. doi.org/10.1016/j.jengtecman.2012.03.002. ##
[63]. Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Business Economics, 9, 361-381. doi.org/10.1023/A:1007921808138.
[64]. Hax, A. C., & Majluf, N. S. (1996). The strategy concept and process: a pragmatic approach, 2, (360-375). Upper Saddle River, NJ: Prentice Hall. ##
[65]. Bond III, E. U., & Houston, M. B. (2003). Barriers to matching new technologies and market opportunities in established firms. Journal of Product Innovation Management, 20(2), 120-135. doi.org/10.1111/1540-5885.2002005. ##
[66]. Wu, C. Y. (2014). Comparisons of technological innovation capabilities in the solar photovoltaic industries of Taiwan, China, and Korea. Scientometrics, 98(1), 429-446. doi.org/10.1007/s11192-013-1120-7. ##
[67]. Hax, A. C., & Majluf, N. S. (1983). The use of the industry attractiveness-business strength matrix in strategic planning. Interfaces, 13(2), 54-71. doi.org/10.1287/inte.13.2.54. ##
[68]. Jolly, D. (2003). The issue of weightings in technology portfolio management. Technovation, 23(5), 383-391. doi.org/10.1016/S0166-4972(02)00157-8. ##
[69]. Lall, S. (1992). Technological capabilities and industrialization. World development, 20(2), 165-186. doi.org/10.1016/0305-750X(92)90097-F. ##
[70]. Vaidya, O. S., & Kumar, S. (2006). Analytic Hierarchy Process: An Overview of Applications. European Journal of operational research, 169(1), 1-29. ##
[71]. اصغرپور، م. ج. (1392). تصمیم گیریهای چندمعیاره، انتشارات دانشگاه تهران، چاپ 11. ##
[72]. وثوقی ش.، چالاک م. ح.، رستمزاده س.، جهانپناه م. و ابراهیمی، ح. (1399). تجزیه و تحلیل علل حوادث سقوط از ارتفاع در پروژههای ساختمانی با رویکرد تحلیل سلسله مراتبی (AHP)، فصلنامه بهداشت و ایمنی کار.##
[73]. Javadi, S. M., Ghanbari, A. M., & Anisi, A. (2018). Financial Performance Evaluation of the Gas Distribution Companies of National Iranian Gas Company. Petroleum Business Review, 2(2), 2-13. ##
[74]. Prommachan, W., Surin, P., Srinoi, P., & Pipathattakul, M. (2024). Selection Criteria for Evaluating Predictive Maintenance Techniques for Rotating Machinery using the Analytic Hierarchical Process (AHP). Engineering, Technology & Applied Science Research, 14(1), 13058-13065. ##
[75]. آراستی، م. ر.، مختارزاده، ن. و خانلری، ا. (1392). ارائه مدل یکپارچه تدوین استراتژی تکنولوژی مبتنی بر رویکرد موقعیتیابی. چشمانداز مدیریت صنعتی, 3(2)، 209-185. ##
[76]. کاظمی، م. (2009). نگرشی کاربردی به مدلهای تدوین استراتژی شرکتها براساس پارادایم تجویزی. صنعت و کارآفرینی، 40. ##
[77]. اخروی، ا. ح. و شکیبامنش، ع. ر. (2019). ارائه مدل تدوین نقشه راه فنآوریهای یک سامانه پیشرفته. فصلنامه مدیریت توسعه فنآوری، 7(1)، 91-118. doi: 10.22104/jtdm.2019.2860.1966. ##
[78]. Jolly, D. R. (2008). Chinese vs. European views regarding technology assessment: Convergent or divergent. Technovation, 28(12), 818-830. doi.org/10.1016/j.technovation.2008.09.001. ##
[79]. Hax, A. C., & No, M. (1993). Linking technology and business strategies: a methodological approach and an illustration. In Perspectives in Operations Management: Essays in Honor of Elwood S. Buffa (pp. 133-155). Boston, MA: Springer US. doi.org/10.1007/978-1-4615-3166-1_8. ##
[80]. UNIDO, Technology Foresight Manual, vol. 1, 2005 Vienna. ##
[81]. Ghazinoory, S., Divsalar, A., & Soofi, A. S. (2009). A new definition and framework for the development of a national technology strategy: The case of nanotechnology for Iran. Technological Forecasting and Social Change, 76(6), 835-848. ##