[1]. Bedrikovetsky, P. (2013). Mathematical theory of oil and gas recovery: with applications to ex-USSR oil and gas fields, (Vol. 4). Springer Science & Business Media.##
[2]. Lake, L. W. (1989). Enhanced Oil Recovery. Eaglewood Cliffs, 1. ##
[3]. Iravani, M., Khalilnezhad, Z., & Khalilnezhad, A. (2023). A review on application of nanoparticles for EOR purposes: history and current challenges. Journal of Petroleum Exploration and Production Technology, 13(4), 959-994. ##
[4]. Iravani, M., & Simjoo, M. (2019). Modeling of polymer associated low salinity waterflooding by fractional flow theory. Journal of Modeling in Engineering, 17(56), 213-222. 10.22075/jme.2018.13131.1290. ##
[5]. Simjoo, M., Rezaei, M. A., Nadri, F., Mousapour, M. S., Iravani, M., & Chahardowli, M. (2019). Introducing a new, low-cost biosurfactant for EOR applications: a mechanistic study. In IOR 2019–20th European Symposium on Improved Oil Recovery, 2019, 1:(1-12). European Association of Geoscientists & Engineers. doi.org/10.3997/2214-4609.201900164. ##
[6]. Boersma, D. M., & Hagoort, J. (1994). Displacement characteristics of nitrogen vs. methane flooding in volatile-oil reservoirs. SPE Reservoir Engineering, 9(04), 261-265. doi.org/10.2118/20187-PA. ##
[7]. Bruining, J., & Marchesin, D. (2007). Maximal oil recovery by simultaneous condensation of alkane and steam. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 75(3), 036312. doi.org/10.1103/PhysRevE.75.036312. ##
[8]. Orr, F. M. (2007). Theory of gas injection processes. Tie-Line Publications. ##
[9]. van Batenburg, D. W., De Zwart, A. H., & Doush, M. (2010, April). Water alternating high pressure air injection. In SPE Improved Oil Recovery Conference? (pp. SPE-129882). SPE. doi.org/10.2118/129882-MS. ##
[10]. Rossen, W. R., & Van Duijn, C. J. (2004). Gravity segregation in steady-state horizontal flow in homogeneous reservoirs. Journal of Petroleum Science and Engineering, 43(1-2), 99-111. doi.org/10.1016/j.petrol.2004.01.004. ##
[11]. Wellington, S. L., & Vinegar, H. J. (1988). Surfactant-induced mobility control for carbon dioxide studied with computerized tomography. doi: 10.1021/bk-1988-0373.ch017. ##
[12]. Chang, Y. B., Lim, M. T., Pope, G. A., & Sepehrnoori, K. (1994). CO2 flow patterns under multiphase flow: heterogeneous field-scale conditions. SPE Reservoir Engineering, 9(03), 208-216. doi.org/10.2118/22654-PA. ##
[13]. Joekar-Niasar, V., & Hassanizadeh, S. M. (2011). Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network modeling. International Journal of Multiphase Flow, 37(2), 198-214. doi.org/10.1016/j.ijmultiphaseflow.2010.09.007. ##
[14]. Koval, E. (1963). A method for predicting the performance of unstable miscible displacement in heterogeneous media. Society of Petroleum Engineers Journal, 3(02), 145-154. doi.org/10.2118/450-PA. ##
[15]. Waggoner, J. R., Castillo, J. L., & Lake, L. W. (1992). Simulation of EOR processes in stochastically generated permeable media. SPE Formation Evaluation, 7(02), 173-180. doi.org/10.2118/21237-PA. ##
[16]. Zapata, V. J., & Lake, L. W. (1981, October). A theoretical analysis of viscous crossflow. In SPE Annual Technical Conference and Exhibition? (pp. SPE-10111). SPE. doi.org/10.2118/10111-MS. ##
[17]. Talebian, S. H., Masoudi, R., Tan, I. M., & Zitha, P. L. J. (2014). Foam assisted CO2-EOR: A review of concept, challenges, and future prospects. Journal of Petroleum Science and Engineering, 120, 202-215. doi.org/10.1016/j.petrol.2014.05.013. ##
[18]. Thompson, K. E., & Gdanskl, R. D. (1993). Laboratory study provides guidelines for diverting acid with foam. SPE Production & Facilities, 8(04), 285-290. doi.org/10.2118/23436-PA. ##
[19]. Huh, D. G., & Handy, L. L. (1989). Comparison of steady-and unsteady-state flow of gas and foaming solution in porous media. SPE Reservoir Engineering, 4(01), 77-84. doi.org/10.2118/15078-PA. ##
[20]. Ma, K., Liontas, R., Conn, C. A., Hirasaki, G. J., & Biswal, S. L. (2012). Visualization of improved sweep with foam in heterogeneous porous media using microfluidics. Soft Matter, 8(41), 10669-10675. doi.org/10.1039/C2SM25833A. ##
[21]. Conn, C. A., Ma, K., Hirasaki, G. J., & Biswal, S. L. (2014). Visualizing oil displacement with foam in a microfluidic device with permeability contrast. Lab on a Chip, 14(20), 3968-3977. doi: 10.1039/C4LC00620H. ##
[22]. Jian, G., Fernandez, C. A., Puerto, M., Sarathi, R., Bonneville, A., & Biswal, S. L. (2021). Advances and challenges in CO2 foam technologies for enhanced oil recovery in carbonate reservoirs. Journal of Petroleum Science and Engineering, 202, 108447. doi.org/10.1016/j.petrol.2021.108447. ##
[23]. Talebian, S. H., Tan, I. M., Sagir, M., & Muhammad, M. (2015). Static and dynamic foam/oil interactions: Potential of CO2-philic surfactants as mobility control agents. Journal of Petroleum Science and Engineering, 135, 118-126. doi.org/10.1016/j.petrol.2015.08.011. ##
[24]. AlQuaimi, B. I., & Rossen, W. R. (2017, April). Characterizing foam flow in fractures for enhanced oil recovery. In IOR 2017-19th European Symposium on Improved Oil Recovery (Vol. 2017, No. 1, pp. 1-16). European Association of Geoscientists & Engineers. doi.org/10.3997/2214-4609.201700336. ##
[25]. Mahmoodi, M., Mahdavi, S., James, L. A., & Johansen, T. (2018). A quick method to fabricate large glass micromodel networks. Microsystem Technologies, 24, 2419-2427. ##
[26]. Wang, Z. B., Guo, W., Pena, A., Whitehead, D. J., Luk’Yanchuk, B. S., Li, L., Liu, Z., Zhou, Y. & Hong, M. H. (2008). Laser micro/nano fabrication in glass with tunable-focus particle lens array. Optics Express, 16(24), 19706-19711. ##
[27]. Rossen, W. R. (2017). Foams in enhanced oil recovery. In Foams (pp. 413-464). Routledge. eBook ISBN9780203755709. ##
[28]. Almajid, M. M., & Kovscek, A. R. (2016). Pore-level mechanics of foam generation and coalescence in the presence of oil. Advances in Colloid and Interface Science, 233, 65-82. doi.org/10.1016/j.cis.2015.10.008.
[29]. Liontas, R., Ma, K., Hirasaki, G. J., & Biswal, S. L. (2013). Neighbor-induced bubble pinch-off: novel mechanisms of in situ foam generation in microfluidic channels. Soft Matter, 9(46), 10971-10984. doi.org/10.1039/C3SM51605A. ##
[30]. Osterloh, W. T., & Jante Jr, M. J. (1992, April). Effects of gas and liquid velocity on steady-state foam flow at high temperature. In SPE Improved Oil Recovery Conference? (pp. SPE-24179). SPE. doi.org/10.2118/24179-MS. ##