رفتار جریانی فوم جهت انحراف سیال در یک محیط متخلخل ناهمگن لایه‌ای: مطالعه آزمایشگاهی در مقیاس میکرو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی نفت و گاز، دانشگاه صنعتی سهند، تبریز، ایران

2 شرکت مهندسی و توسعه نفت، تهران، ایران

10.22078/pr.2024.5381.3394

چکیده

یکی از چالش‌های مهم در مطالعات ازدیاد برداشت نفت، کنترل و انحراف مسیر سیال تزریقی به سمت مناطق هدفی است که نفت باقیمانده بیشتری را دارند. یکی از روش‌های مناسب برای این‌کار، استفاده از فوم است که می‌تواند سبب ارتقای عملکرد جریان سیال تزریقی شود. با این ‌حال جهت بهینه کردن عملکرد فوم لازم است که رفتار آن در مقیاس حفرات بررسی شود تا ساز و کار‌های دخیل در فرآیند انحراف سیال تبیین شوند. در این راستا الگویی از محیط متخلخل طراحی شد که شامل دو لایه با تراوایی مختلف و با شرایط وجود ارتباط سیالی بین لایه‌ها بود. در این مطالعه از عامل فوم‌ساز سدیم دودسیل‌سولفات و شرایط شوری ppm 35000 کلریدسدیم استفاده شد. در انجام آزمایش‌ها، ابتداً میکرومدل اشباع از نفت تحت تزریق آب قرار گرفت، سپس عملکرد فوم در قالب تزریق هم‌زمان گاز و عامل فوم‌ساز بررسی شد. نتایج نشان داد که در طول تزریق گاز بواسطه تحرک‌پذیری بالای سیال تزریقی و عدم ایجاد افت فشار اضافی جهت انحراف سیال، تولید نفت عملاً از لایة پرتراوا صورت‌ گرفته و لایه کم‌تراوا مشارکت پایینی در تولید نفت داشت. اما فوم کردن گاز تزریقی سبب افزایش ویسکوزیته فاز گازی و بهبود بازده جاروبی در سیستم دو لایه ناهمگن شد، به‌گونه‌ای که انحراف سیال تزریقی از لایه پرتراوا به کم‌تراوا اتفاق افتاد. مطابق نتایج حاصله، انحراف سیال توسط فوم منجر به افزایش تولید نفت باقیمانده از لایه کم‌تراوا شده و بازده تولید را از 9% به 85% افزایش داد. اثربخشی فوم در محیط متخلخل ناهمگن لایه‌ای و متعاقباً افزایش تولید نفت باقیمانده در قالب رخدادهای جریان متقاطع ویسکوز، انحراف سیال تزریقی از نواحی پرتراوا به کم‌تراوا و نیز ارتقای عملکرد جبهه جابه‌جایی گاز توصیف شدند. نتایج حاصل از این مطالعه بیانگر پتانسیل مطلوب فوم به‌عنوان یک عامل انحراف سیال جهت کنترل تحرک‌پذیری سیال تزریقی در یک سیستم ناهمگن لایه‌ای می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Foam Flow Behavior for Fluid Diversion in Heterogeneous, Layered Porous Medium: Microscale Experimental Study

نویسندگان [English]

  • Amir Hossein Molaei 1
  • Mohammad Simjoo 1
  • Mohammad Ebrahimi 2
  • Aras Roomi 2
1 Faculty of Petroleum and Gas Engineering, Sahand University of Technology, Tabriz, Iran
2 Petroleum Engineering and Development Company, Tehran, Iran
چکیده [English]

One of the significant challenges in enhanced oil recovery studies is to control and diverte the path of injected fluid towards target zones containing more remaining oil. One of the promising methods for fluid diversion is using foam to increase the performance of injected flow behavior. However, to achieve such a performance, it is necessary to investigate the foam flow behavior at the pore scale to elucidate the governing mechanisms involved in the diversion process. To this end, a porous medium pattern was designed, consisting of dual-layer with different permeabilities and cross flow between them. To conduct experiments, first the oil-saturated micro-model was flooded by brine to reach its residual oil saturation condition. Subsequently, foam performance was examined in the form of simultaneous gas and foaming agent injection. In this study, sodium dodecyl sulfate was used as the foaming agent at 35000 ppm of NaCl brine. Results showed that in gas injection, due to very high gas mobility and thus no enough pressure gradient for liquid diversion, oil recovery was only obtained from high permeability later with almost no contribution from low permeability layer. However, foaming the injected gas improved gas apparent viscosity and thus improving in the heterogeneous dual-layer system in a way that diversion of the injected fluid from the high permeability to low permeability layer occurred. Accordingly, fluid diversion by foam led to an increase in residual oil production from the low permeability layer, increasing the production efficiency from 9% to 85%. The effectiveness of foam injection in a heterogeneous, layered porous media and subsequently increasing residual oil production could be described in the light of viscous cross-flow, diverting the injected fluid from high to low permeability regions, and also enhancing the performance of gas displacement front. Results of this study indicate the promising potential of foam as a viable fluid diversion agent for controlling the mobility of injected fluid in a heterogeneous, layered system.

کلیدواژه‌ها [English]

  • Foam
  • Micromodel
  • Layered Porous Medium
  • Fluid Diversion
  • Mobility Control
[1]. Bedrikovetsky, P. (2013). Mathematical theory of oil and gas recovery: with applications to ex-USSR oil and gas fields, (Vol. 4). Springer Science & Business Media.##
[2]. Lake, L. W. (1989). Enhanced Oil Recovery. Eaglewood Cliffs, 1. ##
[3]. Iravani, M., Khalilnezhad, Z., & Khalilnezhad, A. (2023). A review on application of nanoparticles for EOR purposes: history and current challenges. Journal of Petroleum Exploration and Production Technology, 13(4), 959-994. ##
[4]. Iravani, M., & Simjoo, M. (2019). Modeling of polymer associated low salinity waterflooding by fractional flow theory. Journal of Modeling in Engineering, 17(56), 213-222.  10.22075/jme.2018.13131.1290. ##
[5]. Simjoo, M., Rezaei, M. A., Nadri, F., Mousapour, M. S., Iravani, M., & Chahardowli, M. (2019). Introducing a new, low-cost biosurfactant for EOR applications: a mechanistic study. In IOR 2019–20th European Symposium on Improved Oil Recovery, 2019, 1:(1-12). European Association of Geoscientists & Engineers. doi.org/10.3997/2214-4609.201900164. ##
[6]. Boersma, D. M., & Hagoort, J. (1994). Displacement characteristics of nitrogen vs. methane flooding in volatile-oil reservoirs. SPE Reservoir Engineering, 9(04), 261-265. doi.org/10.2118/20187-PA. ##
[7]. Bruining, J., & Marchesin, D. (2007). Maximal oil recovery by simultaneous condensation of alkane and steam. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 75(3), 036312. doi.org/10.1103/PhysRevE.75.036312. ##
[8]. Orr, F. M. (2007). Theory of gas injection processes. Tie-Line Publications. ##
[9]. van Batenburg, D. W., De Zwart, A. H., & Doush, M. (2010, April). Water alternating high pressure air injection. In SPE Improved Oil Recovery Conference? (pp. SPE-129882). SPE. doi.org/10.2118/129882-MS. ##
[10]. Rossen, W. R., & Van Duijn, C. J. (2004). Gravity segregation in steady-state horizontal flow in homogeneous reservoirs. Journal of Petroleum Science and Engineering, 43(1-2), 99-111. doi.org/10.1016/j.petrol.2004.01.004. ##
[11]. Wellington, S. L., & Vinegar, H. J. (1988). Surfactant-induced mobility control for carbon dioxide studied with computerized tomography. doi: 10.1021/bk-1988-0373.ch017. ##
[12]. Chang, Y. B., Lim, M. T., Pope, G. A., & Sepehrnoori, K. (1994). CO2 flow patterns under multiphase flow: heterogeneous field-scale conditions. SPE Reservoir Engineering, 9(03), 208-216. doi.org/10.2118/22654-PA. ##
[13]. Joekar-Niasar, V., & Hassanizadeh, S. M. (2011). Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network modeling. International Journal of Multiphase Flow, 37(2), 198-214. doi.org/10.1016/j.ijmultiphaseflow.2010.09.007. ##
[14]. Koval, E. (1963). A method for predicting the performance of unstable miscible displacement in heterogeneous media. Society of Petroleum Engineers Journal, 3(02), 145-154. doi.org/10.2118/450-PA. ##
[15]. Waggoner, J. R., Castillo, J. L., & Lake, L. W. (1992). Simulation of EOR processes in stochastically generated permeable media. SPE Formation Evaluation, 7(02), 173-180. doi.org/10.2118/21237-PA. ##
[16]. Zapata, V. J., & Lake, L. W. (1981, October). A theoretical analysis of viscous crossflow. In SPE Annual Technical Conference and Exhibition? (pp. SPE-10111). SPE. doi.org/10.2118/10111-MS. ##
[17]. Talebian, S. H., Masoudi, R., Tan, I. M., & Zitha, P. L. J. (2014). Foam assisted CO2-EOR: A review of concept, challenges, and future prospects. Journal of Petroleum Science and Engineering, 120, 202-215. doi.org/10.1016/j.petrol.2014.05.013. ##
[18]. Thompson, K. E., & Gdanskl, R. D. (1993). Laboratory study provides guidelines for diverting acid with foam. SPE Production & Facilities, 8(04), 285-290. doi.org/10.2118/23436-PA. ##
[19]. Huh, D. G., & Handy, L. L. (1989). Comparison of steady-and unsteady-state flow of gas and foaming solution in porous media. SPE Reservoir Engineering, 4(01), 77-84. doi.org/10.2118/15078-PA. ##
[20]. Ma, K., Liontas, R., Conn, C. A., Hirasaki, G. J., & Biswal, S. L. (2012). Visualization of improved sweep with foam in heterogeneous porous media using microfluidics. Soft Matter, 8(41), 10669-10675. doi.org/10.1039/C2SM25833A. ##
[21]. Conn, C. A., Ma, K., Hirasaki, G. J., & Biswal, S. L. (2014). Visualizing oil displacement with foam in a microfluidic device with permeability contrast. Lab on a Chip, 14(20), 3968-3977. doi: 10.1039/C4LC00620H. ##
[22]. Jian, G., Fernandez, C. A., Puerto, M., Sarathi, R., Bonneville, A., & Biswal, S. L. (2021). Advances and challenges in CO2 foam technologies for enhanced oil recovery in carbonate reservoirs. Journal of Petroleum Science and Engineering, 202, 108447. doi.org/10.1016/j.petrol.2021.108447. ##
[23]. Talebian, S. H., Tan, I. M., Sagir, M., & Muhammad, M. (2015). Static and dynamic foam/oil interactions: Potential of CO2-philic surfactants as mobility control agents. Journal of Petroleum Science and Engineering, 135, 118-126. doi.org/10.1016/j.petrol.2015.08.011. ##
[24]. AlQuaimi, B. I., & Rossen, W. R. (2017, April). Characterizing foam flow in fractures for enhanced oil recovery. In IOR 2017-19th European Symposium on Improved Oil Recovery (Vol. 2017, No. 1, pp. 1-16). European Association of Geoscientists & Engineers. doi.org/10.3997/2214-4609.201700336. ##
[25]. Mahmoodi, M., Mahdavi, S., James, L. A., & Johansen, T. (2018). A quick method to fabricate large glass micromodel networks. Microsystem Technologies, 24, 2419-2427. ##
[26]. Wang, Z. B., Guo, W., Pena, A., Whitehead, D. J., Luk’Yanchuk, B. S., Li, L., Liu, Z., Zhou, Y. & Hong, M. H. (2008). Laser micro/nano fabrication in glass with tunable-focus particle lens array. Optics Express, 16(24), 19706-19711. ##
[27]. Rossen, W. R. (2017). Foams in enhanced oil recovery. In Foams (pp. 413-464). Routledge. eBook ISBN9780203755709. ##
[28]. Almajid, M. M., & Kovscek, A. R. (2016). Pore-level mechanics of foam generation and coalescence in the presence of oil. Advances in Colloid and Interface Science, 233, 65-82. doi.org/10.1016/j.cis.2015.10.008.
[29]. Liontas, R., Ma, K., Hirasaki, G. J., & Biswal, S. L. (2013). Neighbor-induced bubble pinch-off: novel mechanisms of in situ foam generation in microfluidic channels. Soft Matter, 9(46), 10971-10984. doi.org/10.1039/C3SM51605A. ##
[30]. Osterloh, W. T., & Jante Jr, M. J. (1992, April). Effects of gas and liquid velocity on steady-state foam flow at high temperature. In SPE Improved Oil Recovery Conference? (pp. SPE-24179). SPE. doi.org/10.2118/24179-MS. ##