بررسی فعالیت سطحی بایوسورفکتانت دی‌استیلات اسید سوفورولیپید و ارزیابی عملکرد آن در ازدیاد برداشت نفت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 تحقیق و توسعه شرکت بسپارش یکتا نوآور ایرانیان، تهران، ایران

2 تحقیق و توسعه شرکت بسپارش یکتا نوآور ایرانیان، تهران، ایران/پژوهشکده مهندسی نفت، پژوهشگاه شیمی و مهندسی شیمی ایران، تهران، ایران

3 پژوهشکده مهندسی نفت، پژوهشگاه شیمی و مهندسی شیمی ایران، تهران، ایران

10.22078/pr.2024.5473.3437

چکیده

در این پژوهش به بررسی عملکرد بایوسورفکتانت دی‌استیلات اسید سوفورولیپید در ازدیاد برداشت نفت با استفاده از آزمون‌های کنارزدن نفت، آزمایش کشش سطحی و کشش بین‌سطحی، تغییر ترشوندگی و سیلاب‌زنی میکرومدل‌های همگن و ناهمگن پرداخته شده است. در ابتدا توانمندی بایوسورفکتانت در کنارزدن نفت خام مورد مطالعه قرار گرفت. آزمایش کشش سطحی و کشش بین‌سطحی با لحاظ‌کردن تأثیر شوری در کاهش کشش بین‌سطحی انجام شد. در این آزمایش مشخص شد که حضور دی‌استیلات اسید سوفورولیپید در غلظت ppm 5000 کشش سطحی آب خالص را از mN/m 74 به mN/m 41/33 کاهش می‌دهد. همچنین مشخص شد که محلول دی‌استیلات اسید سوفورولیپید در غلظت ppm 5000 و شوری ppm 80000 کشش بین‌سطحی را از mN/m 42/37 به عدد mN/m 14/9 کاهش می‌دهند. در آزمون تغییر ترشوندگی، با اندازه‌گیری زاویه تماس مشخص شد که محلول دی‌استیلات اسید سوفورولیپید توانایی تغییر ترشوندگی سنگ کربناته از نفت‌دوست به آب‌دوست را دارد. محلول دی‌استیلات اسید سوفورولیپید زاویه تماس قطره‌ نفت روی سنگ کربناته را از °20/30 به °42/109 افزایش داد. در نهایت با استفاده از الگوهای مختلف میکرومدل توانایی بایوسورفکتانت‌ دی‌استیلات اسید سوفورولیپید در ازدیاد برداشت نفت سنجیده شد. برای این منظور از دو میکرومدل همگن و ناهمگن استفاده شده است. محلول دی‌استیلات اسید سوفورولیپید در غلظت و شوری بهینه به‌ترتیب در میکرومدل همگن و ناهمگن، موجب 78% و 71% بازیافت نفت شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Surface Activity of Di-acetylated Acid Sophorolipid Biosurfactant and its Performance Evaluation in Enhanced Oil Recovery

نویسندگان [English]

  • Fardin Saghandali 1
  • Farzin Saghandali 2
  • Mahsa Baghban Salehi 3
1 R&D Department of Basparesh Yekta Noavar Iranian (BINA) Company, Tehran, Iran
2 R&D Department of Basparesh Yekta Noavar Iranian (BINA) Company, Tehran, Iran\Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
3 Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
چکیده [English]

This study investigates the performance of diacetylated sophorolipid acid biosurfactant in enhanced oil recovery (EOR) using oil displacement tests, surface and interfacial tension measurements, wettability alteration, and flooding in homogeneous and heterogeneous micromodels. The biosurfactant demonstrated significant potential, reducing the surface tension of pure water from 74 to 41.33 mN/m at 5000 ppm. In the presence of 80,000 ppm salinity, the interfacial tension decreased from 42.37 to 14.9 mN/m. Moreover, wettability alteration tests revealed that the biosurfactant changed carbonate rock wettability from oil-wet to water-wet, increasing the contact angle from 20.30° to 42.11°. Finally, micromodel flooding tests showed oil recovery rates of 78% and 71% in homogeneous and heterogeneous micromodels, respectively, under optimal conditions.

کلیدواژه‌ها [English]

  • Enhanced Oil Recovery
  • Biosurfactant
  • Wettability Alteration
  • Micromodel
  • Diacetylated Sophorolipid Acid
[1]. Sheng, J. J. (2010). Modern chemical enhanced oil recovery: theory and practice. Gulf Professional Publishing.##
[2]. Saghandali, F., Salehi, M. B., & Taghikhani, V. (2023). Improved oil recovery by 3D hydrogel composite reinforced with natural bentonite nanoparticles. Iranian Polymer Journal, 32(11), 1393-1404. ##
[3]. Babadagli, T. (2020, October). Philosophy of EOR. In SPE Asia Pacific Oil and Gas Conference and Exhibition (p. D022S007R002). SPE. doi.org/10.2118/196362-MS. ##
[4]. Seo, S., Mastiani, M., Mosavati, B., Peters, D. M., Mandin, P., & Kim, M. (2018). Performance evaluation of environmentally benign nonionic biosurfactant for enhanced oil recovery. Fuel, 234, 48-55. doi.org/10.1016/j.fuel.2018.06.111. ##
[5]. de Araujo, L. L., Sodré, L. G., Brasil, L. R., Domingos, D. F., de Oliveira, V. M., & da Cruz, G. F. (2019). Microbial enhanced oil recovery using a biosurfactant produced by Bacillus safensis isolated from mangrove microbiota-Part I biosurfactant characterization and oil displacement test. Journal of Petroleum Science and Engineering, 180, 950-957. doi.org/10.1016/j.petrol.2019.06.031. ##
[6]. Liu, Z. X., Liang, Y., Wang, Q., Guo, Y. J., Gao, M., Wang, Z. B., & Liu, W. L. (2020). Status and progress of worldwide EOR field applications. Journal of Petroleum Science and Engineering, 193, 107449. doi.org/10.1016/j.petrol.2020.107449. ##
[7]. Semnani, R. H., Salehi, M. B., Mokhtarani, B., Sharifi, A., Mirzaei, M., & Taghikhani, V. (2022). Evaluation of the interfacial activity of imidazolium-based ionic liquids and their application in enhanced oil recovery process. Journal of Molecular Liquids, 362, 119735. doi.org/10.1016/j.molliq.2022.119735. ##
[8]. Nwidee, L.N., Theophilus, S., Barifcani, A., Sarmadivaleh, M., Iglauer, S.: EOR processes, opportunities and technological advancements. Chemical Enhanced Oil Recovery (cEOR)-a Practical Overview. 2–52 (2016) ##
[9]. Sarafzadeh, P., Hezave, A. Z., Mohammadi, S., Niazi, A., & Ayatollahi, S. (2014). Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM# 14 and Enterobacter cloacae: A mechanistic study. Colloids and Surfaces B: Biointerfaces, 117, 457-465. doi.org/10.1016/j.colsurfb.2013.12.002. ##
[10]. Ravi, S. G., Shadizadeh, S. R., & Moghaddasi, J. (2015). Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery: Using mulberry leaf extract. Petroleum Science and Technology, 33(3), 257-264. doi.org/10.1080/10916466.2014.966916. ##
[11]. Sharma, M., Bryant, S., & Huh, C. (2008). PH sensitive polymers for improving reservoir sweep and conformance control in chemical flooring. Univ. of Texas, Austin, TX (United States). ##
[12]. Ahmadi, M. A., Arabsahebi, Y., Shadizadeh, S. R., & Behbahani, S. S. (2014). Preliminary evaluation of mulberry leaf-derived surfactant on interfacial tension in an oil-aqueous system: EOR application. Fuel, 117, 749-755. ##
[13]. Pashapouryeganeh, F., Zargar, G., Kadkhodaie, A., Rabiee, A., Misaghi, A., Zakariaei, S.J.S.: Experimental evaluation of designed and synthesized Alkaline-Surfactant-polymer (ASP) for chemical flooding in carbonate reservoirs. Fuel. 321, 124090 (2022)و doi.org/10.1016/j.fuel.2013.08.081. ##
[14]. Tavakkoli, O., Kamyab, H., Shariati, M., Mohamed, A. M., & Junin, R. (2022). Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: A review. Fuel, 312, 122867. doi.org/10.1016/j.fuel.2021.122867. ##
[15]. Patel, J., Borgohain, S., Kumar, M., Rangarajan, V., Somasundaran, P., & Sen, R. (2015). Recent developments in microbial enhanced oil recovery. Renewable and Sustainable Energy Reviews, 52, 1539-1558. doi.org/10.1016/j.rser.2015.07.135. ##
[16]. Zheng, C., Yu, L., Huang, L., Xiu, J., & Huang, Z. (2012). Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery. Journal of Petroleum Science and Engineering, 81, 49-56. doi.org/10.1016/j.petrol.2011.12.019. ##
[17]. Niu, J., Liu, Q., Lv, J., & Peng, B. (2020). Review on microbial enhanced oil recovery: Mechanisms, modeling and field trials. Journal of Petroleum Science and Engineering, 192, 107350. doi.org/10.1016/j.petrol.2020.107350. ##
[18]. Aghaei, S., Saghandali, F., Salehi, M. B., Mokhtarani, B., Taghikhani, V., & Saviz, S. (2023). A micromodel investigation on the flooding of glycolipid biosurfactants for enhanced oil recovery. Geoenergy Science and Engineering, 230, 212219. doi.org/10.1016/j.geoen.2023.212219. ##
[19]. Souayeh, M., Al-Wahaibi, Y., Al-Bahry, S., Elshafie, A., Al-Bemani, A., Joshi, S., Al-Hashmi, A. & Al-Mandhari, M. (2014). Optimization of a low-concentration Bacillus subtilis strain biosurfactant toward microbial enhanced oil recovery. Energy & fuels, 28(9), 5606-5611. doi.org/10.1021/ef500954u. ##
[20]. Bazsefidpar, S., Mokhtarani, B., Panahi, R., & Hajfarajollah, H. (2019). Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control. Biodegradation, 30, 59-69. doi.org/10.1007/s10532-018-09866-3. ##
[21]. Hajfarajollah, H., Mokhtarani, B., Tohidi, A., Bazsefidpar, S., & Noghabi, K. A. (2019). Overproduction of lipopeptide biosurfactant by Aneurinibacillus thermoaerophilus HAK01 in various fed-batch modes under thermophilic conditions. RSC advances, 9(52), 30419-30427. doi.org/10.1039/c9ra02645b. doi: 10.1039/C9RA02645B. ##
[22]. Zhao, F., Zhu, H., Cui, Q., Wang, B., Su, H., & Zhang, Y. (2021). Anaerobic production of surfactin by a new Bacillus subtilis isolate and the in situ emulsification and viscosity reduction effect towards enhanced oil recovery applications. Journal of Petroleum Science and Engineering, 201, 108508. doi.org/10.1016/j.petrol.2021.108508. ##
[23]. Ribeiro, M. H., Fahr, E., & Lopes, S. (2022). Glycolipids: From Biosynthesis to Biological Activity toward Therapeutic Application. Biomolecules from natural sources: advances and applications, 1-30. doi.org/10.1016/j.petrol.2021.108508. ##
[24]. Argentin, M. N., Martins, L. F., Sousa, M. P., & Bossolan, N. R. S. (2023). Biosurfactant from a thermo-halophilic strain of Bacillus alveayuensis isolated from a Brazilian oil reservoir: Production, chemical characterization, antimicrobial activity, and efficiency in wettability reversal and oil removal from oil-soaked sand. Geoenergy Science and Engineering, 231, 212324. doi.org/10.1016/j.geoen.2023.212324. ##
[25]. Lebouachera, S. E. I., Balamane-Zizi, O., Boublia, A., Ghriga, M. A., Hasanzadeh, M., Hadri, H. E., Tassalit, D., Khodja, M., Grassl, B. & Drouiche, N. (2024). Understanding the factors affecting the adsorption of surface-active agents onto reservoir rock in chemical enhanced oil recovery applications: a comprehensive review. Chemistry Africa, 7(5), 2283-2306. ##
[26]. Yalaoui-Guellal, D., Fella-Temzi, S., Djafri-Dib, S., Sahu, S. K., Irorere, V. U., Banat, I. M., & Madani, K. (2021). The petroleum-degrading bacteria Alcaligenes aquatilis strain YGD 2906 as a potential source of lipopeptide biosurfactant. Fuel, 285, 119112. doi.org/10.1016/j.fuel.2020.119112. ##
[27]. Amani, H. (2015). Study of enhanced oil recovery by rhamnolipids in a homogeneous 2D micromodel. Journal of Petroleum Science and Engineering, 128, 212-219. doi.org/10.1016/j.petrol.2015.02.030. ##
[28]. Mousavi Moghadam, A., & Baghban Salehi, M. (2019). Enhancing hydrocarbon productivity via wettability alteration: a review on the application of nanoparticles. Reviews in Chemical Engineering, 35(4), 531-563.doi.org/10.1515/revce-2017-0105. ##
[29]. Yao, Y., Wei, M., & Kang, W. (2021). A review of wettability alteration using surfactants in carbonate reservoirs. Advances in Colloid and Interface Science, 294, 102477. doi.org/10.1016/j.cis.2021.102477. ##
[30]. Shadizadeh, S. S., & Kharrat, R. (2015). Experimental investigation of Matricaria chamomilla extract effect on oil-water interfacial tension: Usable for chemical enhanced oil recovery. Petroleum science and technology, 33(8), 901-907. doi.org/10.1080/10916466.2015.1020063. ##
[31]. Khorram Ghahfarokhi, A., Dadashi, A., Daryasafar, A., & Moghadasi, J. (2015). Feasibility study of new natural leaf-derived surfactants on the IFT in an oil–aqueous system: experimental investigation. Journal of Petroleum Exploration and Production Technology, 5(4), 375-382. ##
[32]. Tadros, T. F., Vandamme, A., Levecke, B., Booten, K., & Stevens, C. V. (2004). Stabilization of emulsions using polymeric surfactants based on inulin. Advances in colloid and interface science, 108, 207-226. doi.org/10.1016/j.cis.2003.10.024. ##
[33]. Takassi, M. A., Hashemi, A., Rostami, A., & Zadehnazari, A. (2016). A lysine amino acid-based surfactant: Application in enhanced oil recovery. Petroleum Science and Technology, 34(17-18), 1521-1526. doi.org/10.1080/10916466.2016.1205605. ##
[34]. Shabani, M. H., Jafari, A., & Mousavi, S. M. (2017). A pore scale evaluation of produced biosurfactants for ex-situ enhanced oil recovery. Iranian Journal of Oil and Gas Science and Technology, 6(2), 75-89. doi.org/10.22050/ijogst.2017.47443. ##
[35]. Mohajeri, M., Rasaei, M. R., & Hekmatzadeh, M. (2019). Experimental study on using SiO2 nanoparticles along with surfactant in an EOR process in micromodel. Petroleum Research, 4(1), 59-70. doi.org/10.1016/j.ptlrs.2018.09.001. ##
[36]. Dashtaki, S. R. M., Ali, J. A., Manshad, A. K., Nowrouzi, I., Mohammadi, A. H., & Keshavarz, A. (2020). Experimental investigation of the effect of Vitagnus plant extract on enhanced oil recovery process using interfacial tension (IFT) reduction and wettability alteration mechanisms. Journal of Petroleum Exploration and Production Technology, 10, 2895-2905. ##
[37]. Wang, D., Luo, Y., Lai, R., Cui, K., Li, H., Zhang, Z., Zhang, Y. & Shi, R. (2020). New technique for enhancing oil recovery from low-permeability reservoirs: The synergy of silica nanoparticles and biosurfactant. Energy & Fuels, 35(1), 318-328. doi.org/10.1021/acs.energyfuels.0c02808. ##
[38]. Purwasena, I. A., Amaniyah, M., Astuti, D. I., Firmansyah, Y., & Sugai, Y. (2024). Production, characterization, and application of Pseudoxanthomonas taiwanensis biosurfactant: a green chemical for microbial enhanced oil recovery (MEOR). Scientific reports, 14(1), 10270. ##