اندازه‌گیری تجربی تعادل مایع-مایع مخلوط بنزن- هپتان- حلال‌های اتکتیک عمیق به‌منظور استخراج بنزن از هپتان

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)، تهران، ایران

چکیده

امروزه در صنایع نفت و پتروشیمی از حلال‌های اتکتیک عمیق به‌عنوان یک نسل جدید حلال‌های سبز و کارآمد برای جداسازی ترکیبات آزئوتروپ‌دار استفاده می‌شود. این حلال‌ها زیست سازگار بوده و از نظر اقتصادی مقرون به‌صرفه می‌باشد. در این روش جداسازی، حلال اتکتیک عمیق برای ماده مورد نظر (جزء استخراج شونده) نسبت به سایر اجزای موجود در مخلوط قدرت حل‌کنندگی بیشتری دارد. در این پژوهش حاضر، جداسازی ترکیب آزئوتروپ‌دار بنزن- هپتان به‌عنوان آروماتیک و آلیفاتیک نفتی به‌کمک حلال‌های اتکتیک عمیق سنتز شده (کولین کلراید/ اوره، کولین کلراید/ گلیسرول، کولین کلراید/ اتیلن گلایکول، کولین کلراید/ پروپان دی ال) مورد بررسی قرار گرفته است. همچنین مدل‌سازی ترمودینامیکی فرآیند استخراج به‌وسیله مدل ترمودینامیکی NRTL انجام شده است. نتایج حاصل از بررسی فرآیند استخراج بنزن از هپتان نشان دادند که گزیش‌پذیری حلال‌های اتکتیک عمیق بزرگتر از واحد بوده و از نظر اقتصادی برای واحدهای صنعتی استخراج مناسب می‌باشد. همپنین نتایج مدل‌سازی نشان داد مدل NRLT با دقت خوبی داده‌های تعادلی سامانه‌های مذکور را تطبیق می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Investigation of the Effect of Preformed Particle Gel Size and Concentration and Permeability of Porous Medium on Residual Factor and Residual Resistance Factor

نویسندگان [English]

  • Keyvan Tarighati
  • Abbas Naderifar
  • Gholamreza Pazuki
EOR Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
چکیده [English]

Unwanted water production in oil and gas reservoirs leads to significant operational challenges, including facility corrosion and reduced oil relative permeability. Preformed particle gel (PPG) has emerged as an effective solution for controlling water production and enhancing sweep efficiency since its introduction in 2007. This study investigates the impact of key parameters—gel particle size, concentration, porous medium permeability, and injection flow rate—on the residual factor (RF) and residual resistance factor (RRF) using slim tube tests. The experiments involved synthesizing PPG from monomers such as acrylamide (AM), sodium salt of acrylamide methylpropane sulfonic acid (AMPSNa), and normal vinyl pyrrolidone (NVP), with methylene base acrylamide (MBA) as a crosslinking agent. The synthesized gel was injected into slim tubes filled with crushed rock of varying permeabilities. Results demonstrated that larger gel particles exhibited higher retention in the porous medium, leading to increased RRF values. Gel concentration directly influenced the threshold pressure, with higher concentrations resulting in greater RRF due to enhanced gel volume in the pores. Additionally, reduced permeability of the slim tube correlated with higher injection pressures, while increased flow rates elevated pressure drops without significantly affecting gel injectability. The primary mechanism of PPG passage through the porous medium was identified as particle breakage and entrapment, supported by post-injection particle size measurements. These findings underscore the importance of optimizing gel properties and injection parameters to maximize water control efficiency while minimizing formation damage.

کلیدواژه‌ها [English]

  • Preformed Particle Gel (PPG)
  • Residual Resistance Factor (RRF)
  • Slim Tube Test
  • Water Control
  • Porous Medium Permeability
[1]. AL-Muhandis, O., Mustafa, H. H., & Hallow, T. A. (2018). Improvement of Industrial Linear Alkyl Benzene for Detergents Production. Kirkuk University Journal for Scientific Studies, 13(1). doi: 10.32894/kujss.2018.143039.##
[2]. Wang, X., Xu, H., Zou, Y., Hu, W., & Wang, L. (2022). Mechanistic insight into separation of benzene and cyclohexane by extractive distillation using deep eutectic solvent as entrainer. Journal of Molecular Liquids, 368, 120780. doi.org/10.1016/j.molliq.2022.120780. ##
[3]. Zhang, Y., Xue, K., Li, H., Lian, S., Han, C., Zhu, Z., Lu, Y., Qi, J. and Wang, Y., 2023. Mechanism analysis and liquid-liquid equilibrium of methyl tert-butyl ether separation from petroleum wastewater azeotrope by green mixed solvent. Journal of Environmental Chemical Engineering, 11(2), p.109389. doi.org/10.1016/j.jece.2023.109389. ##
[4]. بهروزی، ا.، کثیری، ن.، شیخی،م. (1398) و محمدی، ت، بررسی آزمایشگاهی و شبیه‌سازی فرآیند میکروفیلتراسیون جریان متقاطع امولسیون نفت در آب با غشای سلولز استات. پژوهش نفت، 29،(98-4)، 111-127. doi: 10.22078/pr.2019.3456.2588. ##
[5]. Yang, F., Zhang, Q., Xin, H., Wu, T., & Zhang, Z. (2023). Liquid–liquid equilibrium measurement for the separation of n-propanol+ n-propyl acetate using imidazolium-based ionic liquids with different anions at T= 303.15 K. Journal of Chemical & Engineering Data, 68(4), 936-944. doi.org/10.1021/acs.jced.2c00753. ##
[6]. Anantharaj, R., & Banerjee, T. (2011). Fast solvent screening for the simultaneous hydrodesulfurization and hydrodenitrification of diesel oil using ionic liquids. Journal of Chemical & Engineering Data, 56(6), 2770-2785. doi.org/10.1021/je1011289. ##
[7]. Płotka-Wasylka, J., De la Guardia, M., Andruch, V., & Vilková, M. (2020). Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchemical Journal, 159, 105539. doi.org/10.1016/j.microc.2020.105539. ##
[8]. Sulthan, R., Reghunadhan, A., & Sambhudevan, S. (2023). A new era of chitin synthesis and dissolution using deep eutectic solvents-comparison with ionic liquids. Journal of Molecular Liquids, 380, 121794. doi.org/10.1016/j.molliq.2023.121794. ##
[9]. Sarıkaya, Y., Baykal, M., Önal, M., & Yener, N. (2013). Adsorption from n-heptane/benzene liquid mixture on acid leached bentonite powders. Applied surface science, 283, 678-682. doi.org/10.1016/j.apsusc.2013.06.164. ##
[10]. Usman, M. A., Fagoroye, O. K., Ajayi, T. O., & Kehinde, A. J. (2021). Binary mixtures of choline chloride-based deep eutectic solvents as green extractants for the extraction of benzene from n-hexane. Applied Petrochemical Research, 11(2), 165-182. ##
[11]. Rolińska, K., Jakubowska, E., Żmieńko, M., & Łęczycka-Wilk, K. (2024). Choline chloride-based deep eutectic solvents as plasticizer and active agent in chitosan films. Food Chemistry, 444, 138375. doi.org/10.1016/j.foodchem.2024.138375. ##
[12]. Chen, Y., Chen, W., Fu, L., Yang, Y., Wang, Y., Hu, X., Wang, F. and Mu, T., 2019. Surface tension of 50 deep eutectic solvents: effect of hydrogen-bonding donors, hydrogen-bonding acceptors, other solvents, and temperature. Industrial & Engineering Chemistry Research, 58(28), pp.12741-12750. doi.org/10.1021/acs.iecr.9b00867. ##
[13]. Esfahani, H. S., Khoshsima, A., & Pazuki, G. (2020). Choline chloride-based deep eutectic solvents as green extractant for the efficient extraction of 1-butanol or 2-butanol from azeotropic n-heptane+ butanol mixtures. Journal of Molecular Liquids, 313, 113524. doi.org/10.1016/j.molliq.2020.113524. ##
[14]. Tarighati, K., Naderifar, A., & Pazuki, G. (2024). Liquid-liquid equilibrium extraction method for 1-butanol/methylcyclohexane and acetonitrile/benzene azeotrope mixtures using multiple deep eutectic solvents based on choline chloride. Methylcyclohexane and Acetonitrile/Benzene Azeotrope Mixtures Using Multiple Deep Eutectic Solvents Based on Choline Chloride. http://dx.doi.org/10.2139/ssrn.4662666. ##
[15]. Xu, X., Liu, W., Li, M., Ri, Y., & Wang, Y. (2017). Ternary liquid–liquid equilibrium of azeotropes (ester+ alcohol) with different ionic liquids at T= 298.15 K. Journal of Chemical & Engineering Data, 62(1), 532-538. doi.org/10.1021/acs.jced.6b00811. ##
[16]. شکاری، ح.، زعفرانی معطر، م.، و محمدی، ب. () اثر حلال اوتکتیک عمیق کولین کلراید/ N- فرمیل مورفولین روی استخراج مایع– مایع بنزن/ تیوفن از نرمال هگزان. پژوهش نفت، 29، (98-2)، 1398، 19-33.
doi: 10.22078/pr.2019.3498.2595. ##
[17]. Fabries, J. F., Gustin, J. L., & Renon, H. (1977). Experimental measurements of phase equilibrium properties for systems containing n-heptane, benzene, N-methylpyrrolidone, and monoethanolamine. Representation by the NRTL equation. Journal of Chemical and Engineering Data, 22(3), 303-308. doi.org/10.1021/je60074a022. ##
[18]. Song, X., Zhang, R., Xie, T., Wang, S., & Cao, J. (2019). Deep eutectic solvent micro-functionalized graphene assisted dispersive micro solid-phase extraction of pyrethroid insecticides in natural products. Frontiers in Chemistry, 7, 594. doi.org/10.3389/fchem.2019.00594. ##
[19]. Ghanbari, M., Salavati-Niasari, M., & Mohandes, F. (2021). Injectable hydrogels based on oxidized alginate-gelatin reinforced by carbon nitride quantum dots for tissue engineering. International journal of pharmaceutics, 602, 120660. doi.org/10.1016/j.ijpharm.2021.120660. ##
[20]. Ghanbari, M., Salavati-Niasari, M., & Mohandes, F. (2021). Thermosensitive alginate–gelatin–nitrogen-doped carbon dots scaffolds as potential injectable hydrogels for cartilage tissue engineering applications. RSC advances, 11(30), 18423-18431. doi: 10.1039/D1RA01496J. ##
[21]. Zullaikah, S., Rachmaniah, O., Utomo, A. T., Niawanti, H., & Ju, Y. H. (2018). Green separation of bioactive natural products using liquefied mixture of solids. Green Chemistry, 1, 17-38. ##
[22].Jurić, T., Uka, D., Holló, B. B., Jović, B., Kordić, B., & Popović, B. M. (2021). Comprehensive physicochemical evaluation of choline chloride-based natural deep eutectic solvents. Journal of Molecular Liquids, 343, 116968. doi.org/10.1016/j.molliq.2021.116968. ##
[23]. Banjare, R. K., Banjare, M. K., Behera, K., Pandey, S., & Ghosh, K. K. (2020). Micellization behavior of conventional cationic surfactants within glycerol-based deep eutectic solvent. ACS omega, 5(31), 19350-19362. doi.org/10.1021/acsomega.0c00866. ##
[24]. Hanke, C. G., Johansson, A., Harper, J. B., & Lynden-Bell, R. M. (2003). Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liquids? A simulation study. Chemical physics letters, 374(1-2), 85-90. doi.org/10.1016/S0009-2614(03)00703-6. ##
[25]. Revelli, A. L., Mutelet, F., & Jaubert, J. N. (2010). Extraction of benzene or thiophene from n-heptane using ionic liquids. NMR and thermodynamic study. The Journal of Physical Chemistry B, 114(13), 4600-4608. doi.org/10.1021/jp911978a. ##
[26]. Salleh, Z., Wazeer, I., Mulyono, S., El-blidi, L., Hashim, M. A., & Hadj-Kali, M. K. (2017). Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents–COSMO-RS screening and experimental validation. The Journal of Chemical Thermodynamics, 104, 33-44. doi.org/10.1016/j.jct.2016.09.002. ##
[27]. Shekaari, H., Zafarani-Moattar, M. T., & Mohammadi, B. (2019). Effective extraction of benzene and thiophene by novel deep eutectic solvents from hexane/aromatic mixture at different temperatures. Fluid Phase Equilibria, 484, 38-52. doi.org/10.1016/j.fluid.2018.11.025. ##
[28]. Khodabakhshitabar, M., Bakhshi, H., & Rahimnejad, M. (2021). Separation of aromatics from a cyclic-aliphatic hydrocarbon using ethylene glycol and a choline chloride-based deep eutectic solvent. Journal of Chemical & Engineering Data, 66(10), 3919-3933. doi.org/10.1021/acs.jced.1c00581. ##