[1]. Economides, M. J., & Nolte, K. G. (1989). Reservoir stimulation. 2, 6-10. Englewood Cliffs, NJ: Prentice Hall.##
[2]. Dai C. and Zhao F. (2019). Oilfield Chemistry, Oilfield, Chemistry 1–395, , doi: 10.1007/978-981-13-2950-0. ##
[3]. Shirazi, M. M., Ayatollahi, S., & Ghotbi, C. (2019). Damage evaluation of acid-oil emulsion and asphaltic sludge formation caused by acidizing of asphaltenic oil reservoir. Journal of Petroleum Science and Engineering, 174, 880-890. doi: 10.1016/j.petrol.2018.11.051. ##
[4]. Ganeeva, Y. M., Yusupova, T. N., Barskaya, E. E., Valiullova, A. K., Okhotnikova, E. S., Morozov, V. I., & Davletshina, L. F. (2020). The composition of acid/oil interface in acid oil emulsions. Petroleum Science, 17, 1345-1355. doi.org/10.1007/s12182-020-00447-9. ##
[5]. Pourakaberian, A., Ayatollahi, S., Shirazi, M. M., Ghotbi, C., & Sisakhti, H. (2021). A systematic study of asphaltic sludge and emulsion formation damage during acidizing process: Experimental and modeling approach. Journal of Petroleum Science and Engineering, 207, 109073, doi: 10.1016/j.petrol.2021.109073. ##
[6]. Shakouri, S., & Mohammadzadeh-Shirazi, M. (2023). Modeling of asphaltic sludge formation during acidizing process of oil well reservoir using machine learning methods. Energy, 285, 129433, doi: 10.1016/j.energy.2023.129433. ##
[7]. Chavanne, C., & Perthuis, H. G. (1992, November). A Fluid selection expert system for matrix treatments. In SPE Europec featured at EAGE Conference and Exhibition? (pp. SPE-24995). SPE. doi: 10.2118/24995-MS. ##
[8]. Ebrahim, A. S., Garrouch, A. A., & Lababidi, H. M. (2014). Automating sandstone acidizing using a rule-based system. Journal of Petroleum Exploration and Production Technology, 4, 381-396. doi: 10.1007/s13202-014-0104-3. ##
[9].Koroteev, D., & Tekic, Z. (2021). Artificial intelligence in oil and gas upstream: Trends, challenges, and scenarios for the future. Energy and AI, 3, 100041, doi: 10.1016/j.egyai.2020.100041. ##
[10]. Sircar, A., Yadav, K., Rayavarapu, K., Bist, N., & Oza, H. (2021). Application of machine learning and artificial intelligence in oil and gas industry. Petroleum Research, 6(4), 379-391, doi: 10.1016/j.ptlrs.2021.05.009. ##
[11]. Mohaghegh, S. D. (2005). Recent developments in application of artificial intelligence in petroleum engineering. Journal of Petroleum Technology, 57(04), 86-91.doi.org/10.2118/89033-JPT. ##
[12]. Alkinani, H. H., Al-Hameedi, A. T., Dunn-Norman, S., Flori, R. E., Alsaba, M. T., & Amer, A. S. (2019). Applications of artificial neural networks in the petroleum industry. A review. In SPE Middle East oil and gas show and conference (p. D032S063R002). SPE.doi.org/10.2118/195072-MS. ##
[13]. Mohaghegh, S. (2000). Virtual-intelligence applications in petroleum engineering: Part 1—Artificial neural networks. Journal of Petroleum Technology, 52(09), 64-73. doi.org/10.2118/58046-JPT. ##
[14]. Mohaghegh, S., Arefi, R., Ameri, S., Aminiand, K., & Nutter, R. (1996). Petroleum reservoir characterization with the aid of artificial neural networks. Journal of Petroleum Science and Engineering, 16(4), 263-274.doi.org/10.1016/S0920-4105(96)00028-9. ##
[15]. Ebrahim, A. S., Garrouch, A. A., & Lababidi, H. M. (2014). Automating sandstone acidizing using a rule-based system. Journal of Petroleum Exploration and Production Technology, 4, 381-396, doi: 10.1007/s13202-014-0104-3. ##
[16]. خیرالهی، ح.، چهاردولی، م. و سیمجو م. (1403). انتخــاب بهتریــن ناحیــه پیادهســازی پایلــوت بـرای روشهـای تزریـق آب پایـه بـا اسـتفاده از الگوریتمهــای تصمیمگیــری چنــد شــاخصه، پژوهش نفت، 34(5)، 19-3. doi: 10.22078/pr.2024.5315.3361. ##
[17]. خیرالهی، ح.، زاید، م.، سبحانی، ص.، چهاردولی، م. و سیمجو، م. (1402). غربالگری روشهای ازدیادبرداشت از مخازن نفتی با استفاده از تلفیق روشهای هوشمصنوعی، پژوهش نفت، 33(5)، 62-51،.doi: 10.22078/pr.2023.5151.3284. ##
[18]. کریمی، ع. و صادقنژاد، س. (1401). بازسازی تصویر سنگ مخزن متراکم با شبکه عصبی مولد رقابتی، پژوهش نفت، 32(5)، 94-83. doi: 10.22078/pr.2022.4843.3165. ##
[19]. رجبی هشتجین، م. و جعفریبهبهانی، ت. (1396). بهبود مدل پیشبینی رفتار رئولوژیکی سیال حفاری با استفاده از شبکه عصبی، پژوهش نفت، 27(6)، 58-46. doi: 10.22078/pr.2017.2619.2211. ##
[20]. Sumotarto, U., Hill, A. D., & Sepehrnoori, K. (1995, October). An integrated sandstone acidizing fluid selection and simulation to optimize treatment design. In SPE Annual Technical Conference and Exhibition? (pp. SPE-30520). SPE., doi: 10.2118/30520-ms. ##
[21]. Kellogg, R. P., Chessum, W., & Kwong, R. (2018, April). Machine learning application for wellbore damageremoval in the wilmington field. In SPE Western Regional Meeting (p. D041S011R001). SPE., doi: 10.2118/190037-ms. ##
[22]. Sidaoui, Z., Abdulraheem, A., & Abbad, M. (2018, April). Prediction of optimum injection rate for carbonate acidizing using machine learning. In SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition (pp. SPE-192344). SPE., doi: 10.2118/192344-ms. ##
[23]. Xue, H., Liu, P. L., Li, N. Y., Luo, Z. F., & Zhao, L. Q. (2012). Expert system for acidizing based on BP neural network. Advanced Materials Research, 548, 438-443, doi: 10.4028/www.scientific.net/AMR.548.438. ##
[24]. Van Domelen, M. S., Ford, W. G. F., & Chiu, T. J. (1992, October). An expert system for matrix acidizing treatment design. In SPE Annual Technical Conference and Exhibition? (pp. SPE-24779). SPE. doi: 10.2523/24779-ms. ##
[25]. Alkathim, M., Aljawad, M. S., Hassan, A., Alarifi, S. A., & Mahmoud, M. (2023). A data-driven model to estimate the pore volume to breakthrough for carbonate acidizing. Journal of Petroleum Exploration and Production Technology, 13(8), 1789-1806, doi: 10.1007/s13202-023-01642-1. ##
[26]. Hassan, A., Aljawad, M. S., & Mahmoud, M. (2021). An artificial intelligence-based model for performance prediction of acid fracturing in naturally fractured reservoirs. ACS Omega, 6(21), 13654-13670.doi: 10.1021/acsomega.1c00809. ##
[27]. Dargi, M., Khamehchi, E., & Mahdavi Kalatehno, J. (2023). Optimizing acidizing design and effectiveness assessment with machine learning for predicting post-acidizing permeability. Scientific Reports, 13(1), 11851, doi: 10.1038/s41598-023-39156-9. ##
[28]. O. Sanni, O. Adeleke, K. Ukoba, J. Ren, and T.-C. Jen, “Prediction of inhibition performance of agro-waste extract in simulated acidizing media via machine learning,” Fuel, Vol. 356, 2024, doi: https://doi.org/10.1016/j.fuel.2023.129527. ##
[29]. Kurniawan, C., Azis, M. M., & Ariyanto, T. (2023). Supervised machine learning and multiple regression approach to predict successfulness of matrix acidizing in hydraulic fractured sandstone formation. ASEAN Journal of Chemical Engineering, 23(1), 113-127.doi.org/10.22146/ajche.78255. ##
[30]. Blackburn, C. R., Abel, J. C., & Day, R. (1990). An expert system to design and evaluate matrix acidizing. SPE Computer Applications, 2(06), 15-17, doi: https://doi.org/10.2118/20337-PA. ##
[31]. Chiu, T. J., Caudell, E. A., & Wu, F. L. (1993). Development of an expert system to assist with complex fluid design. SPE Computer Applications, 5(01), 18-20. doi.org/10.2118/24416-PA. ##
[32]. Hua, J., Xiong, Z., Lowey, J., Suh, E., & Dougherty, E. R. (2005). Optimal number of features as a function of sample size for various classification rules. Bioinformatics, 21(8), 1509-1515. doi: 10.1093/bioinformatics/bti171. ##
[33]. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-Sampling Technique. Journal of artificial intelligence research, 16, 321-357. doi: 10.1613/jair.953. ##
[34]. Blagus, R. and Lusa, L. (2013). SMOTE for high-dimensional class-imbalanced data, BMC Bioinformatics, 14. 2013. doi: 10.1186/1471-2105-14-106. ##
[35]. Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N., & Asadpour, M. (2020). Boosting methods for multi-class imbalanced data classification: an experimental review. Journal of Big Data, 7, 1-47, doi: 10.1186/s40537-020-00349-y. ##