[1]. Baker, J., Guler, M., Medonna, A., Li, Z., & Ghosh, A. (2025). Analysis of large-scale (1GW) off-grid agrivoltaic solar farm for hydrogen-powered fuel cell electric vehicle (HFCEV) charging station. Energy Conversion and Management, 323, 119184, doi: 10.1016/j.enconman.2024.119184.##
[2]. Moradi, R., & Groth, K. M. (2019). Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. International Journal of Hydrogen Energy, 44(23), 12254-12269, doi: 10.1016/j.ijhydene.2019.03.041.##
[3]. Revabhai, P. M., Singhal, R. K., Basu, H., & Kailasa, S. K. (2023). Progress on boron nitride nanostructure materials: properties, synthesis and applications in hydrogen storage and analytical chemistry. Journal of Nanostructure in Chemistry, 13(1), 1-41.##
[4]. Bosu, S., & Rajamohan, N. (2024). Recent advancements in hydrogen storage-Comparative review on methods, operating conditions and challenges. International Journal of Hydrogen Energy, 52, 352-370, doi: 10.1016/j.ijhydene.2023.01.344.##
[5]. Li, W., Jiang, L., Jiang, W., Wu, Y., Guo, X., Li, Z., Yuan, H. & Luo, M. (2023). Recent advances of boron nitride nanosheets in hydrogen storage application. Journal of Materials Research and Technology, 26, 2028-2042., doi: 10.1016/j.jmrt.2023.08.035.##
[6]. Zhang, H., Liu, Y., Sun, K., Li, S., Zhou, J., Liu, S., Wei, H., Liu, B., Xie, L., Li, B. & Jiang, J. (2023). Applications and theory investigation of two-dimensional boron nitride nanomaterials in energy catalysis and storage. EnergyChem, 5(6), 100108, doi: 10.1016/j.enchem.2023.100108.##
[7]. Dethan, J. F., & Swamy, V. (2022). Mechanical and thermal properties of carbon nanotubes and boron nitride nanotubes for fuel cells and hydrogen storage applications: A comparative review of molecular dynamics studies. International Journal of Hydrogen Energy, 47(59), 24916-24944, doi: 10.1016/j.ijhydene.2022.05.240.##
[8]. Panigrahi, P. K., Chandu, B., Motapothula, M. R., & Puvvada, N. (2024). Potential benefits, challenges and perspectives of various methods and materials used for hydrogen storage. Energy & Fuels, 38(4), 2630-2653, doi: 10.1021/acs.energyfuels.3c04084.##
[9]. Weng, Q., Zeng, L., Chen, Z., Han, Y., Jiang, K., Bando, Y., & Golberg, D. (2021). Hydrogen storage in carbon and oxygen Co-doped porous boron nitrides. Advanced Functional Materials, 31(4), 2007381, doi: 10.1002/adfm.202007381.
[10]. Lale, A., Bernard, S., & Demirci, U. B. (2018). Boron nitride for hydrogen storage. ChemPlusChem, 83(10), 893-903, doi: 10.1002/cplu.201800168.##
[11]. Xu, Y., Zhang, Y., Zhang, F., Huang, X., Bi, L., Yin, J., Yan, G., Zhao, H., Hu, J., Yang, Z. & Wang, Y. (2024). Carbon doping of B6N6 monolayer can improve its hydrogen storage performance effectively: A theoretical study. International Journal of Hydrogen Energy, 50, 475-483. doi.org/10.1016/j.ijhydene.2023.07.216.##
[12]. Talla, J. A., Al-Khaza’leh, K., & Omar, N. (2022). Tuning the electronic properties of carbon-doped double-walled boron nitride nanotubes: density functional theory. Russian Journal of Inorganic Chemistry, 67(7), 1025-1034, doi: 10.1134/S0036023622070178.##
[13]. Wang, X., Zhao, T., Liu, C., Wang, X., & Zhang, Y. (2022). Molecular simulation of the O2 diffusion and thermo-oxidative degradation mechanism of carbon-doped boron nitride nanosheets/BTDA-ODA polyimide composites with high O2 adsorption capacity. Surfaces and Interfaces, 33, 102246., doi: https://doi.org/10.1016/j.surfin.2022.102246.##
[14]. Shirodkar, S. N., Sayou Ngomsi, C. A., & Dev, P. (2023). Small Electron Polaron in Carbon-Doped Cubic Boron Nitride. ACS Applied Electronic Materials, 5(3), 1707-1714. doi.org/10.1021/acsaelm.2c01743.##
[15]. Taib, A. K., Johari, Z., Abd. Rahman, S. F., Mohd Yusoff, M. F., & Hamzah, A. (2023). Hydrogen gas sensing performance of a carbon-doped boron nitride nanoribbon at elevated temperatures. PLoS One, 18(3), e0282370, doi: https://doi.org/10.1371/journal.pone.0282370.##
[16]. Matveev, A. T., Kovalskii, A. M., Antipina, L. Y., Klimchuk, D. O., Manakhov, A. M., Al-Qasim, A. S., & Shtansky, D. V. (2025). Experimental and theoretical insights into enhanced hydrogen uptake by H2-activated BNOC nanomaterials. International Journal of Hydrogen Energy, 97, 787-797, doi: 10.1016/j.ijhydene.2024.11.399.##
[17]. Tokarev, A., Kjeang, E., Cannon, M., & Bessarabov, D. (2016). Theoretical limit of reversible hydrogen storage capacity for pristine and oxygen-doped boron nitride. International Journal of Hydrogen Energy, 41(38), 16984-16991, doi: 10.1016/j.ijhydene.2016.07.010.##
[18]. Shayeganfar, F., & Shahsavari, R. (2016). Oxygen-and lithium-doped hybrid boron-nitride/carbon networks for hydrogen storage. Langmuir, 32(50), 13313-13321, doi: 10.1021/acs.langmuir.6b02997.##
[19]. Ma, C., Zhang, Y., Yan, S., & Liu, B. (2022). Carbon-doped boron nitride nanosheets: A high-efficient electrocatalyst for ambient nitrogen reduction. Applied Catalysis B: Environmental, 315, 121574, doi: 10.1016/j.apcatb.2022.121574.##
[20]. Guo, J., Duan, Y., Wu, T., Zhang, W., Wang, L., Zhang, Y., Luo, Q., Lu, Q., Zhang, Y., Mu, H. & Wang, D. (2023). Atomically dispersed cerium sites in carbon-doped boron nitride for photodriven CO2 reduction: Local polarization and mechanism insight. Applied Catalysis B: Environmental, 324, 122235, doi: 10.1016/j.apcatb.2022.122235.##
[21]. Zhang, P., Chen, Y., Chen, Y., Guo, Q., Liu, Y., Yang, Y., Cao, Q., Chong, H. & Lin, M. (2023). Functionalized hierarchically porous carbon doped boron nitride for multipurpose and efficient treatment of radioactive sewage. Science of The Total Environment, 866, 161378, doi: 10.1016/j.scitotenv.2022.161378.##
[22]. Jiao, L., Zhao, X., Guo, Z., Chen, Y., Wu, Z., Yang, Y., Wang, M., Ge, X. & Lin, M. (2022). Effect of γ irradiation on the properties of functionalized carbon-doped boron nitride reinforced epoxy resin composite. Polymer Degradation and Stability, 206, 110167, doi: 10.1016/j.polymdegradstab.2022.110167.##
[23]. Chen, Y., Zhang, P., Jiao, L., Chen, G., Yang, Y., Chong, H., & Lin, M. (2022). High efficient and selective removal of U (VI) from lanthanides by phenanthroline diamide functionalized carbon doped boron nitride. Chemical Engineering Journal, 446, 137337, doi: 10.1016/j.cej.2022.137337.##
[24]. Liu, F., Han, R., Nattestad, A., Sun, X., & Huang, Z. (2020). Carbon-and oxygen-doped hexagonal boron nitride for degradation of organic pollutants. Surface Innovations, 9(4), 222-230, doi: 10.1680/jsuin.20.00061.##
[25]. Liu, Z., Zhang, M., Wang, H., Cang, D., Ji, X., Liu, B., Yang, W., Li, D. & Liu, J. (2020). Defective carbon-doped boron nitride nanosheets for highly efficient electrocatalytic conversion of N2 to NH3. ACS Sustainable Chemistry & Engineering, 8(13), 5278-5286, doi: 10.1021/acssuschemeng.0c00330.##
[26]. Kumar, E. M., Sinthika, S., & Thapa, R. (2015). First principles guide to tune h-BN nanostructures as superior light-element-based hydrogen storage materials: role of the bond exchange spillover mechanism. Journal of Materials Chemistry A, 3(1), 304-313, doi: 10.1039/c4ta04706k.##
[27]. Liu, F., Nattestad, A., Naficy, S., Han, R., Casillas, G., Angeloski, A., Sun, X. & Huang, Z. (2019). Fluorescent Carbon-and Oxygen-Doped Hexagonal Boron Nitride Powders as Printing Ink for Anticounterfeit Applications. Advanced Optical Materials, 7(24), 1901380, doi: 10.1002/adom.201901380.##
[28]. Berseneva, N., Gulans, A., Krasheninnikov, A. V., & Nieminen, R. M. (2013). Electronic structure of boron nitride sheets doped with carbon from first-principles calculations. Physical Review B—Condensed Matter and Materials Physics, 87(3), 035404, doi: 10.1103/PhysRevB.87.035404.##