سنتز نیترید‌بور دوپ شده با کربن و اکسیژن با سطح ویژه بالا به‌منظور به‌کارگیری در ذخیره فیزیکی گاز هیدروژن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

2 گروه انرژی‌های تجدیدپذیر، پژوهشگاه نیرو، تهران، ایران

چکیده

مطالعات نشان‌دهنده افزایش انرژی جذب فیزیکی مولکول‌های هیدروژن در اثر تغییر شیمی نیتریدبور به‌وسیله دوپ کردن جانشینی اتم‌های کربن و اکسیژن است. از آنجا که جذب فیزیکی گاز مستقیماً تحت تأثیر ریزساختار ماده است، توسعه روش سنتزی که ضمن کنترل بر ریزساختار و سطح ویژه نیترید‌بور، اتم‌های کربن و اکسیژن را وارد ساختار کند، دارای اهمیت است. درحالی‌که دمای سنتز یکی از مهم‌ترین عوامل کنترل بلورینگی، درصد تخلخل و سطح ویژه ماده است، پژوهش‌ها نشان داده‌اند که افزایش دما منجر به خارج شدن دوپه کربن از ساختار نیترید‌بور می‌شود. در این پژوهش، برای اولین بار دوپ کردن عناصر کربن و اکسیژن در نیترید‌بور با تغییر اتمسفر کوره از نیتروژن خالص به اتمسفر مخلوط نیتروژن و هیدروژن انجام و بررسی شده است.  به این منظور، پیش ماده سنتز نیترید‌بور با استفاده از کربنات گوانیدین و اسید بوریک با انحلال هم‌زمان در آب و رسوب‎دهی آماده‌سازی شد. این پیش‌ماده تحت اتمسفر مخلوط گازی نیتروژن و هیدروژن (95% N2/5%H2) در دماهای 1000 و C° 1500 به‌مدت h 3 تحت عملیات حرارتی  قرار گرفت. بررسی فازی به‌کمک آنالیز پراش پرتو ایکس (XRD)، بررسی ریزساختاری با کمک میکروسکوپ الکترونی روبشی گسل میدانی (FESEM) و اندازه‌گیری سطح ویژه با کمک آزمایش جذب-واجذب نیتروژن و به‌روش BET انجام گرفت. همچنین به‌منظور تعیین غلظت و نحوه قرارگیری اتم‌های دوپه در ساختار، از طیف‌سنجی فوتوالکترون پرتو ایکس (XPS) استفاده شد. نتایج نشان می‌دهند که صفحات نیترید‌بور در دمای C° 1000 با موفقیت سنتز شده‌ و سطح ویژه این ماده m2/g 300 با حفراتی با عرض 15 تا Å 40 است. علاوه‌براین، نتایج آنالیز فازی نشان‌دهنده پراش پرتو ایکس، مطابق با الگوی پراش نیتریدبور هگزاگونال استاندارد است. طیف‌سنجی رامان، تشکیل پیوندهای نیتریدبور در امتداد صفحات را تأیید می‌کند مقدار اکسیژن و کربن دوپ شده در این ماده به‌ترتیب 6 و 17% اندازه‌گیری و گزارش شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis of High-surface-area Carbon- and Oxygen-doped Boron Nitride for Enhanced Hydrogen Physisorption Capacity

نویسندگان [English]

  • Farshid Farzaneh 1
  • Hajar Ghanbari 1
  • Mohammad Golmohammad 2
  • Hossein Sarpoolaky 1
1 Ceramics Group, School of Metallurgy and Materials Engineering, Iran University Science & Technology, Tehran, Iran.
2 Renewable Energy Department, Niroo Research Institute, Tehran, Iran
چکیده [English]

Doping by substitution in boron nitride using carbon and oxygen has been studied. The aim of this research was to modify the synthesis process to achieve doping of carbon and oxygen into the boron nitride structure by substituting dopant atoms with boron or nitrogen atoms without causing significant changes in the nanostructure and properties of the sample. To achieve this, the precursor for boron nitride synthesis was prepared by simultaneous dissolution of guanidine carbonate and boric acid in water and subsequent precipitation. This precursor was then subjected to a mixed nitrogen-hydrogen gas atmosphere (95% N2 / 5% H2) at temperatures of 1000°C and 1500°C for 3 hours. Phase analysis was performed using X-ray diffraction (XRD), microstructure investigation was carried out using scanning electron microscopy (SEM), and surface area measurement was conducted using nitrogen adsorption and desorption (BET) analysis. Additionally, X-ray photoelectron spectroscopy (XPS) was utilized to determine the concentration and placement of dopant atoms within the structure. The results indicate successful synthesis of boron nitride sheets at 1000°C with sub-nanometer pore sizes and high surface area. Furthermore, the phase analysis results show X-ray diffraction peaks corresponding to hexagonal boron nitride. Ultimately, the results of Raman spectroscopy confirms the formation of bonds within the boron nitride sheets, and the measured percentages of oxygen and carbon doping in the material are reported as 6% and 17%, respectively. Factors such as relatively low synthesis temperature and the use of a nitrogen/hydrogen mixed atmosphere in the synthesis process enabled the doping of oxygen and carbon atoms into the boron nitride structure.

کلیدواژه‌ها [English]

  • Physical Hydrogen Storage
  • Hexagonal Boron Nitride
  • Substitutional Doping
  • Nanosheet
[1]. Baker, J., Guler, M., Medonna, A., Li, Z., & Ghosh, A. (2025). Analysis of large-scale (1GW) off-grid agrivoltaic solar farm for hydrogen-powered fuel cell electric vehicle (HFCEV) charging station. Energy Conversion and Management, 323, 119184, doi: 10.1016/j.enconman.2024.119184.##
[2]. Moradi, R., & Groth, K. M. (2019). Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. International Journal of Hydrogen Energy, 44(23), 12254-12269, doi: 10.1016/j.ijhydene.2019.03.041.##
[3]. Revabhai, P. M., Singhal, R. K., Basu, H., & Kailasa, S. K. (2023). Progress on boron nitride nanostructure materials: properties, synthesis and applications in hydrogen storage and analytical chemistry. Journal of Nanostructure in Chemistry, 13(1), 1-41.##
[4]. Bosu, S., & Rajamohan, N. (2024). Recent advancements in hydrogen storage-Comparative review on methods, operating conditions and challenges. International Journal of Hydrogen Energy, 52, 352-370, doi: 10.1016/j.ijhydene.2023.01.344.##
[5]. Li, W., Jiang, L., Jiang, W., Wu, Y., Guo, X., Li, Z., Yuan, H. & Luo, M. (2023). Recent advances of boron nitride nanosheets in hydrogen storage application. Journal of Materials Research and Technology, 26, 2028-2042., doi: 10.1016/j.jmrt.2023.08.035.##
[6]. Zhang, H., Liu, Y., Sun, K., Li, S., Zhou, J., Liu, S., Wei, H., Liu, B., Xie, L., Li, B. & Jiang, J. (2023). Applications and theory investigation of two-dimensional boron nitride nanomaterials in energy catalysis and storage. EnergyChem, 5(6), 100108, doi: 10.1016/j.enchem.2023.100108.##
[7]. Dethan, J. F., & Swamy, V. (2022). Mechanical and thermal properties of carbon nanotubes and boron nitride nanotubes for fuel cells and hydrogen storage applications: A comparative review of molecular dynamics studies. International Journal of Hydrogen Energy, 47(59), 24916-24944, doi: 10.1016/j.ijhydene.2022.05.240.##
[8]. Panigrahi, P. K., Chandu, B., Motapothula, M. R., & Puvvada, N. (2024). Potential benefits, challenges and perspectives of various methods and materials used for hydrogen storage. Energy & Fuels, 38(4), 2630-2653, doi: 10.1021/acs.energyfuels.3c04084.##
[9]. Weng, Q., Zeng, L., Chen, Z., Han, Y., Jiang, K., Bando, Y., & Golberg, D. (2021). Hydrogen storage in carbon and oxygen Co-doped porous boron nitrides. Advanced Functional Materials, 31(4), 2007381, doi: 10.1002/adfm.202007381.
[10]. Lale, A., Bernard, S., & Demirci, U. B. (2018). Boron nitride for hydrogen storage. ChemPlusChem, 83(10), 893-903, doi: 10.1002/cplu.201800168.##
[11]. Xu, Y., Zhang, Y., Zhang, F., Huang, X., Bi, L., Yin, J., Yan, G., Zhao, H., Hu, J., Yang, Z. & Wang, Y. (2024). Carbon doping of B6N6 monolayer can improve its hydrogen storage performance effectively: A theoretical study. International Journal of Hydrogen Energy, 50, 475-483. doi.org/10.1016/j.ijhydene.2023.07.216.##
[12]. Talla, J. A., Al-Khaza’leh, K., & Omar, N. (2022). Tuning the electronic properties of carbon-doped double-walled boron nitride nanotubes: density functional theory. Russian Journal of Inorganic Chemistry, 67(7), 1025-1034, doi: 10.1134/S0036023622070178.##
[13]. Wang, X., Zhao, T., Liu, C., Wang, X., & Zhang, Y. (2022). Molecular simulation of the O2 diffusion and thermo-oxidative degradation mechanism of carbon-doped boron nitride nanosheets/BTDA-ODA polyimide composites with high O2 adsorption capacity. Surfaces and Interfaces, 33, 102246., doi: https://doi.org/10.1016/j.surfin.2022.102246.##
[14]. Shirodkar, S. N., Sayou Ngomsi, C. A., & Dev, P. (2023). Small Electron Polaron in Carbon-Doped Cubic Boron Nitride. ACS Applied Electronic Materials, 5(3), 1707-1714. doi.org/10.1021/acsaelm.2c01743.##
[15]. Taib, A. K., Johari, Z., Abd. Rahman, S. F., Mohd Yusoff, M. F., & Hamzah, A. (2023). Hydrogen gas sensing performance of a carbon-doped boron nitride nanoribbon at elevated temperatures. PLoS One, 18(3), e0282370, doi: https://doi.org/10.1371/journal.pone.0282370.##
[16]. Matveev, A. T., Kovalskii, A. M., Antipina, L. Y., Klimchuk, D. O., Manakhov, A. M., Al-Qasim, A. S., & Shtansky, D. V. (2025). Experimental and theoretical insights into enhanced hydrogen uptake by H2-activated BNOC nanomaterials. International Journal of Hydrogen Energy, 97, 787-797, doi: 10.1016/j.ijhydene.2024.11.399.##
[17]. Tokarev, A., Kjeang, E., Cannon, M., & Bessarabov, D. (2016). Theoretical limit of reversible hydrogen storage capacity for pristine and oxygen-doped boron nitride. International Journal of Hydrogen Energy, 41(38), 16984-16991, doi: 10.1016/j.ijhydene.2016.07.010.##
[18]. Shayeganfar, F., & Shahsavari, R. (2016). Oxygen-and lithium-doped hybrid boron-nitride/carbon networks for hydrogen storage. Langmuir, 32(50), 13313-13321, doi: 10.1021/acs.langmuir.6b02997.##
[19]. Ma, C., Zhang, Y., Yan, S., & Liu, B. (2022). Carbon-doped boron nitride nanosheets: A high-efficient electrocatalyst for ambient nitrogen reduction. Applied Catalysis B: Environmental, 315, 121574, doi: 10.1016/j.apcatb.2022.121574.##
[20]. Guo, J., Duan, Y., Wu, T., Zhang, W., Wang, L., Zhang, Y., Luo, Q., Lu, Q., Zhang, Y., Mu, H. & Wang, D. (2023). Atomically dispersed cerium sites in carbon-doped boron nitride for photodriven CO2 reduction: Local polarization and mechanism insight. Applied Catalysis B: Environmental, 324, 122235, doi: 10.1016/j.apcatb.2022.122235.##
[21]. Zhang, P., Chen, Y., Chen, Y., Guo, Q., Liu, Y., Yang, Y., Cao, Q., Chong, H. & Lin, M. (2023). Functionalized hierarchically porous carbon doped boron nitride for multipurpose and efficient treatment of radioactive sewage. Science of The Total Environment, 866, 161378, doi: 10.1016/j.scitotenv.2022.161378.##
[22]. Jiao, L., Zhao, X., Guo, Z., Chen, Y., Wu, Z., Yang, Y., Wang, M., Ge, X. & Lin, M. (2022). Effect of γ irradiation on the properties of functionalized carbon-doped boron nitride reinforced epoxy resin composite. Polymer Degradation and Stability, 206, 110167, doi: 10.1016/j.polymdegradstab.2022.110167.##
[23]. Chen, Y., Zhang, P., Jiao, L., Chen, G., Yang, Y., Chong, H., & Lin, M. (2022). High efficient and selective removal of U (VI) from lanthanides by phenanthroline diamide functionalized carbon doped boron nitride. Chemical Engineering Journal, 446, 137337, doi: 10.1016/j.cej.2022.137337.##
[24]. Liu, F., Han, R., Nattestad, A., Sun, X., & Huang, Z. (2020). Carbon-and oxygen-doped hexagonal boron nitride for degradation of organic pollutants. Surface Innovations, 9(4), 222-230, doi: 10.1680/jsuin.20.00061.##
[25]. Liu, Z., Zhang, M., Wang, H., Cang, D., Ji, X., Liu, B., Yang, W., Li, D. & Liu, J. (2020). Defective carbon-doped boron nitride nanosheets for highly efficient electrocatalytic conversion of N2 to NH3. ACS Sustainable Chemistry & Engineering, 8(13), 5278-5286, doi: 10.1021/acssuschemeng.0c00330.##
[26]. Kumar, E. M., Sinthika, S., & Thapa, R. (2015). First principles guide to tune h-BN nanostructures as superior light-element-based hydrogen storage materials: role of the bond exchange spillover mechanism. Journal of Materials Chemistry A, 3(1), 304-313, doi: 10.1039/c4ta04706k.##
[27]. Liu, F., Nattestad, A., Naficy, S., Han, R., Casillas, G., Angeloski, A., Sun, X. & Huang, Z. (2019). Fluorescent Carbon-and Oxygen-Doped Hexagonal Boron Nitride Powders as Printing Ink for Anticounterfeit Applications. Advanced Optical Materials, 7(24), 1901380, doi: 10.1002/adom.201901380.##
[28]. Berseneva, N., Gulans, A., Krasheninnikov, A. V., & Nieminen, R. M. (2013). Electronic structure of boron nitride sheets doped with carbon from first-principles calculations. Physical Review B—Condensed Matter and Materials Physics, 87(3), 035404, doi: 10.1103/PhysRevB.87.035404.##