[1]. Sáinz-García, A., Abarca, E., Rubí, V., & Grandia, F. (2017). Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer. International Journal of Hydrogen Energy, 42(26), 16657-16666. doi.org/10.1016/j.ijhydene.2017.05.076.##
[2]. Kanaani M, Sedaee B, Asadian-Pakfar M (2022) Role of Cushion Gas on Underground Hydrogen Storage in Depleted Oil Reservoirs. Journal Energy Storage 45:103783. doi.org/10.1016/j.est.2021.103783.##
[3]. Hannan, M. A., Abu, S. M., Al-Shetwi, A. Q., Mansor, M., Ansari, M. N. M., Muttaqi, K. M., & Dong, Z. Y. (2022). Hydrogen energy storage integrated battery and supercapacitor based hybrid power system: A statistical analysis towards future research directions. International Journal of Hydrogen Energy, 47(93), 39523-39548. doi.org/10.1016/j.ijhydene.2022.09.099.##
[4]. Feldmann, F., Hagemann, B., Ganzer, L., & Panfilov, M. (2016). Numerical Simulation of Hydrodynamic and Microbiological Processes in porous Underground Hydrogen Storages. Numerical simulation of hydrodynamic and gas mixing processes in underground hydrogen storages. Environmental Earth Sciences, 75(16), 1165.doi.org/10.1007/s12665-016-5948-z.##
[5]. Sambo, C., Dudun, A., Samuel, S. A., Esenenjor, P., Muhammed, N. S., & Haq, B. (2022). A review on worldwide underground hydrogen storage operating and potential fields. International Journal of Hydrogen Energy, 47(54), 22840-22880.doi.org/10.1016/j.ijhydene.2022.05.126.##
[6]. Vaziri, P., & Sedaee, B. (2024). An application of a genetic algorithm in co-optimization of geological CO2 storage based on artificial neural networks. Clean Energy, 8(1), 111-125. doi.org/10.1093/ce/zkad077.##
[7]. Minougou, J. D., Gholami, R., & Andersen, P. (2023). Underground hydrogen storage in caverns: Challenges of impure salt structures. Earth-Science Reviews, 247, 104599. doi.org/10.1016/j.earscirev.2023.104599.##
[8]. Zamehrian, M., & Sedaee, B. (2024). A comparative analysis of gas mixing during the underground hydrogen storage in a conventional and fractured reservoir. Gas Science and Engineering, 122, 205217. doi.org/10.1016/j.jgsce.2024.205217.##
[9]. Hellerschmied C, Schritter J, Waldmann N, Zaduryan AB, Rachbauer L, Scherr KE, Andiappan A, Bauer S, Pichler M, Loibner AP (2024) Hydrogen storage and geo-methanation in a depleted underground hydrocarbon reservoir. Nat Energy. doi.org/10.1038/s41560-024-01458-1.##
[10]. Sadeghi S., Sedaee B. (2022) Cushion and working gases mixing during underground gas storage: Role of fractures, Journal of Energy Storage, Volume 55, Part B, 105530, doi.org/10.1016/j.est.2022.105530. ##
[11]. Guney MS, Tepe Y (2017) Classification and assessment of energy storage systems. Renew Sustain Energy Rev 75:1187–1197. https://doi.org/10.1016/j.rser.2016.11.102.##
[12]. Pfeiffer WT, Bauer S (2015) Subsurface porous media hydrogen storage - scenario development and simulation. Energy Procedia 76:565–572. doi.org/10.1016/j.egypro.2015.07.872.##
[13]. Matos, C. R., Carneiro, J. F., & Silva, P. P. (2019). Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification. Journal of Energy Storage, 21, 241-258. doi.org/10.1016/j.est.2018.11.023.##
[14]. Feitz, A., Wang, L., Rees, S., & Carr, L. (2022). Feasibility of underground hydrogen storage in a salt cavern in the offshore Polda Basin. Geoscience Australia: Canberra. doi.org/10.26186/147914.##
[15]. Strobel, G., Hagemann, B., Huppertz, T. M. and Ganzer L. (2020). Underground bio-methanation: Concept and potential. Renew Sustain Energy Reviews, 123:109747. doi.org/10.1016/j.rser.2020.109747.##
[16]. Huang L, Fang Y, Hou Z, Xie Y, Wu L, Luo J, Wang Q, Guo Y, Sun W (2024) A preliminary site selection system for underground hydrogen storage in salt caverns and its application in Pingdingshan, China. Deep Undergr, eep Underground Science and Engineering 3:117–128. doi.org/10.1002/dug2.12069.##
[17]. Kumar, K. R., Honorio, H., Chandra, D., Lesueur, M., & Hajibeygi, H. (2023). Comprehensive review of geomechanics of underground hydrogen storage in depleted reservoirs and salt caverns. Journal of Energy Storage, 73, 108912. doi.org/10.1016/j.est.2023.108912.##
[18]. Ramesh Kumar, K., Makhmutov, A., Spiers, C. J., & Hajibeygi, H. (2021). Geomechanical simulation of energy storage in salt formations. Scientific Reports, 11(1), 19640. 11:19640. doi.org/10.1038/s41598-021-99161-8.##
[19]. Michalski, J., Bünger, U., Crotogino, F., Donadei, S., Schneider, G. S., Pregger, T., Cao, K.K. & Heide, D. (2017). Hydrogen generation by electrolysis and storage in salt caverns: Potentials, economics and systems aspects with regard to the German energy transition. International Journal of Hydrogen Energy, 42(19), 13427-13443. doi.org/10.1016/j.ijhydene.2017.02.102.##
[20]. Zivar, D., Kumar, S., & Foroozesh, J. (2021). Underground hydrogen storage: A comprehensive review. International Journal of Hydrogen Energy, 46(45), 23436-23462. doi.org/10.1016/j.ijhydene.2020.08.138.##
[21]. Tarkowski, R. (2019). Underground hydrogen storage: Characteristics and prospects. Renewable and Sus tainableEnergy Reviews, 105, 86-94. doi.org/10.1016/j.rser.2019.01.051.##
[22]. Tackie-Otoo, B. N., & Haq, M. B. (2024). A comprehensive review on geo-storage of H2 in salt caverns: Prospect and research advances. Fuel, 356, 129609. doi.org/10.1016/j.fuel.2023.129609.##
[23]. Melhem, G. A., Saini, R., & Goodwin, B. M. (1989). A modified Peng-Robinson equation of state. Fluid Phase Equilibria, 47(2-3), 189-237. doi.org/10.1016/0378-3812(89)80176-1.##
[24]. Mamdouh, M., Elsayed, S. K., & El-Rammah, S. (2023). Investigation of the Properties of Hydrocarbon Natural Gases Under Confinement in Tight Reservoirs Due to Critical Properties Shift. Arabian Journal for Science and Engineering, 48(12), 16907-16919. doi.org/10.1007/s13369-023-08210-z.##
[25]. Chen, H., Peng, H., Duan, J., Wang, J., Li, S., & Yang, Y. (2022). Creep behaviors of interlayers around an underground strategic petroleum reserve (SPR) cavern in bedded salt rocks. Advances in Materials Science and Engineering, 2022(1), 7003227. doi.org/10.1155/2022/7003227.##
[26]. Hemme, C., & van Berk, W. (2017). Potential risk of H2S generation and release in salt cavern gas storage. Journal of Natural Gas Science and Engineering, 47, 114-123. doi.org/10.1016/j.jngse.2017.09.007.##
[27]. Pająk, L., Lankof, L., Tomaszewska, B., Wojnarowski, P., & Janiga, D. (2021). The development of the temperature disturbance zone in the surrounding of a salt cavern caused by the leaching process for safety hydrogen storage. Energies, 14(4), 803. doi.org/10.3390/en14040803.##
[28]. Kalam, S., Abu-Khamsin, S. A., Kamal, M. S., Abbasi, G. R., Lashari, N., Patil, S., & Abdurrahman, M. (2023). A mini-review on underground hydrogen storage: production to field studies. Energy & Fuels, 37(12), 8128-8141. doi.org/10.1021/acs.energyfuels.3c00841.##
[29]. Amirthan, T., & Perera, M. S. A. (2023). Underground hydrogen storage in Australia: a review on the feasibility of geological sites. International Journal of Hydrogen Energy, 48(11), 4300-4328. doi.org/10.1016/j.ijhydene.2022.10.218. ##