[1]. صابری مقدم، ع.، زارع چاوشی، م.، نوذری، ع.، شیخی نارانی، م.، خبری، و. و بحری رشتآبادی م. م. (2017). بررسی تولید هیدروژن با استفاده از فرایند ریفرمینگ بخار آب با متان در حضور کاتالیزور نیکل در دماهای متوسط. پژوهش نفت، 26، (86) 95-4.##
[2]. Abbas, H. F., & Daud, W. W. (2010). Hydrogen production by methane decomposition: A review. International Journal of Hydrogen Energy, 35(3), 1160-1190. doi.org/10.1016/j.ijhydene.2009.11.036. ##
[3]. Hwang, N., Song, Y. H., & Cha, M. S. (2010). Efficient Use of $\hbox {CO} _ {2} $ Reforming of Methane With an Arc-Jet Plasma. IEEE Transactions on Plasma Science, 38(12), 3291-3299. ##
[4]. Besser, R. S., & Lindner, P. J. (2011). Microplasma reforming of hydrocarbons for fuel cell power. Journal of Power Sources, 196(21), 9008-9012. doi.org/10.1016/j.jpowsour.2010.11.135. ##
[5]. Burlica, R., Shih, K. Y., Hnatiuc, B., & Locke, B. R. (2011). Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions. Industrial & Engineering Chemistry Research, 50(15), 9466-9470. doi.org/10.1021/ie101920n. ##
[6]. Putra, A. E. E., Nomura, S., Mukasa, S., & Toyota, H. (2012). Hydrogen production by radio frequency plasma stimulation in methane hydrate at atmospheric pressure. International Journal of Hydrogen Energy, 37(21), 16000-16005. doi.org/10.1016/j.ijhydene.2012.07.099. ##
[7]. Jasiński, M., Czylkowski, D., Hrycak, B., Dors, M., & Mizeraczyk, J. (2013). Atmospheric pressure microwave plasma source for hydrogen production. International Journal of Hydrogen Energy, 38(26), 11473-11483. doi.org/10.1016/j.ijhydene.2013.05.105. ##
[8]. Jimenez, M., Rincon, R., Marinas, A., & Calzada, M. D. (2013). Hydrogen production from ethanol decomposition by a microwave plasma: Influence of the plasma gas flow. International Journal of Hydrogen Energy, 38(21), 8708-8719. doi.org/10.1016/j.ijhydene.2013.05.004. ##
[9]. Hrycak, B., Czylkowski, D., Miotk, R., Dors, M., Jasinski, M., & Mizeraczyk, J. (2014). Application of atmospheric pressure microwave plasma source for hydrogen production from ethanol. International Journal of Hydrogen Energy, 39(26), 14184-14190. doi.org/10.1016/j.ijhydene.2014.02.160. ##
[10]. Li, X. D., Zhang, H., Yan, S. X., Yan, J. H., & Du, C. M. (2012). Hydrogen production from partial oxidation of methane using an AC rotating gliding arc reactor. IEEE Transactions on plasma science, 41(1), 126-132. ##
[11]. Nozaki, T., & Okazaki, K. (2013). Non-thermal plasma catalysis of methane: Principles, energy efficiency, and applications. Catalysis today, 211, 29-38. doi.org/10.1016/j.cattod.2013.04.002. ##
[12]. Zhang, H., Du, C., Wu, A., Bo, Z., Yan, J., & Li, X. (2014). Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production. International journal of hydrogen energy, 39(24), 12620-12635. doi.org/10.1016/j.ijhydene.2014.06.047. ##
[13]. Korolev, Y. D. (2015). Low-current discharge plasma jets in a gas flow. Application of plasma jets. Russian Journal of General Chemistry, 85, 1311-1325. ##
[14]. Wang, Q., Spasova, B., Hessel, V., & Kolb, G. (2015). Methane reforming in a small-scaled plasma reactor–industrial application of a plasma process from the viewpoint of the environmental profile. Chemical Engineering Journal, 262, 766-774. doi.org/10.1016/j.cej.2014.09.091. ##
[15]. Alharbi, A. A., Alqahtani, N. B., Alkhedhair, A. M., Alabduly, A. J., Almaleki, A. A., Almadih, M. H., Albishi, M.S. and Almayeef, A. A. (2022). A developed plasmatron design to enhance production of hydrogen in synthesis gas produced by a fuel reformer system. Energies, 15(3), 1071. doi.org/10.3390/en15031071. ##
[16]. Bromberg, L., Cohn, D. R., Hadidi, K., Heywood, J. B., & Rabinovich, A. (2005). Plasmatron fuel reformer development and internal combustion engine vehicle applications. Diesel Engine Emission Reduction (DEER) Workshop, 2004. ##
[17]. Bromberg, L. (2005). CFD modeling of plasmatron methane reformer. ##
[18]. Bromberg, L., Hadidi, K., & Cohn, D. R. (2005). Plasmatron reformation of renewable fuels. ##
[19]. Sobacchi, M. G., Saveliev, A. V., Fridman, A. A., Kennedy, L. A., Ahmed, S., & Krause, T. (2002). Experimental assessment of a combined plasma/catalytic system for hydrogen production via partial oxidation of hydrocarbon fuels. International Journal of Hydrogen Energy, 27(6), 635-642. doi.org/10.1016/S0360-3199(01)00179-3. ##
[20]. Mutaf-Yardimci, O., Saveliev, A. V., Fridman, A. A., & Kennedy, L. A. (1998). Employing plasma as catalyst in hydrogen production. International Journal of Hydrogen Energy, 23(12), 1109-1111. doi.org/10.1016/S0360-3199(98)00005-6. ##
[21]. Iskenderova, K., Porshnev, P., Gutsol, A., Saveliev, A., Fridman, A., Kennedy, L., & Rufael, T. (2001). Methane conversion into syn-gas in gliding arc discharge. ##
[22]. Kalra, C. S., Gutsol, A. F., & Fridman, A. A. (2005). Gliding arc discharges as a source of intermediate plasma for methane partial oxidation. IEEE transactions on plasma science, 33(1), 32-41. ##
[23].Petitpas, G., Rollier, J. D., Darmon, A., Gonzalez-Aguilar, J., Metkemeijer, R., & Fulcheri, L. (2007). A comparative study of non-thermal plasma assisted reforming technologies. International Journal of Hydrogen Energy, 32(14), 2848-2867. doi.org/10.1016/j.ijhydene.2007.03.026. ##
[24]. Moshrefi, M. M., Rashidi, F., Bozorgzadeh, H. R., & Zekordi, S. M. (2012). Methane conversion to hydrogen and carbon black by DC-spark discharge. Plasma Chemistry and Plasma Processing, 32, 1157-1168. ##
[25]. Moshrefi, M. M., & Rashidi, F. (2018). Hydrogen production from methane decomposition in cold plasma reactor with rotating electrodes. Plasma Chemistry and Plasma Processing, 38, 503-515. ##
[26]. Rueangjitt, N., Sreethawong, T., Chavadej, S., & Sekiguchi, H. (2011). Non-oxidative reforming of methane in a mini-gliding arc discharge reactor: effects of feed methane concentration, feed flow rate, electrode gap distance, residence time, and catalyst distance. Plasma Chemistry and Plasma Processing, 31, 517-534. ##
[27]. Lee, D. H., Song, Y. H., Kim, K. T., & Lee, J. O. (2013). Comparative study of methane activation process by different plasma sources. Plasma Chemistry and Plasma Processing, 33, 647-661. ##
[28]. Farouk, T., Farouk, B., & Fridman, A. (2010). Computational studies of atmospheric-pressure methane–hydrogen DC micro glow discharges. IEEE Transactions on Plasma Science, 38(2), 73-85. ##
[29]. Fincke, J. R., Anderson, R. P., Hyde, T., Detering, B. A., Wright, R., Bewley, R. L., Haggard, D.C. & Swank, W. D. (2002). Plasma thermal conversion of methane to acetylene. Plasma Chemistry and Plasma Processing, 22, 105-136. ##
[30]. Kim, H. H., Teramoto, Y., Ogata, A., Takagi, H., & Nanba, T. (2016). Plasma catalysis for environmental treatment and energy applications. Plasma Chemistry and Plasma Processing, 36, 45-72. ##
[31]. Fridman, A., Nester, S., Kennedy, L. A., Saveliev, A., & Mutaf-Yardimci, O. (1999). Gliding arc gas discharge. Progress in Energy and combustion Science, 25(2), 211-231. doi.org/10.1016/S0360-1285(98)00021-5. ##
[32]. Rusu, I., & Cormier, J. M. (2003). On a possible mechanism of the methane steam reforming in a gliding arc reactor. Chemical Engineering Journal, 91(1), 23-31. doi.org/10.1016/S1385-8947(02)00043-8. ##
[33]. Scapinello, M., Delikonstantis, E., & Stefanidis, G. D. (2017). The panorama of plasma-assisted non-oxidative methane reforming. Chemical Engineering and Processing: Process Intensification, 117, 120-140. doi.org/10.1016/j.cep.2017.03.024. ##
[34]. Sun, S. R., Wang, H. X., Mei, D. H., Tu, X., & Bogaerts, A. (2017). CO2 conversion in a gliding arc plasma: Performance improvement based on chemical reaction modeling. Journal of CO2 Utilization, 17, 220-234. doi.org/10.1016/j.jcou.2016.12.009. ##
[35]. Cleiren, E., Heijkers, S., Ramakers, M., & Bogaerts, A. (2017). Dry reforming of methane in a gliding arc plasmatron: towards a better understanding of the plasma chemistry. ChemSusChem, 10(20), 4025-4036. doi.org/10.1002/cssc.201701274. ##
[36]. Kalra, C. S., Cho, Y. I., Gutsol, A., Fridman, A., & Rufael, T. S. (2005). Gliding arc in tornado using a reverse vortex flow. Review of Scientific Instruments, 76(2). doi.org/10.1063/1.1854215. ##