[1]. Iordache, I., Schitea, D., Gheorghe, A. V., & Iordache, M. (2014). Hydrogen underground storage in Romania, potential directions of development, stakeholders and general aspects. International Journal of Hydrogen Energy, 39(21), 11071-11081, doi: 10.1016/j.ijhydene.2014.05.067.##
[2]. Akbari Sene, R., Rahmani, F., Moradi, G., & Sharifnia, S. (2020). Immobilization of TiO2 nanoparticles over treated natural aluminasilicate for hydrogen production: Effect of support treatment and operational conditions of process. Journal of Petroleum Research, 30(99-2), 14-30, doi: 10.22078/pr.2020.3827.2743.##
[3]. Rusman, N. A. A., & Dahari, M. (2016). A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41(28), 12108-12126, doi: 10.1016/j.ijhydene.2016.05.244.##
[4]. Zhan, L., Bo, Y., Lin, T., & Fan, Z. (2021). Development and outlook of advanced nuclear energy technology. Energy Strategy Reviews, 34, 100630, doi: 10.1016/j.esr.2021.100630.##
[5]. Rezk, H., Alsaman, A. S., Al-Dhaifallah, M., Askalany, A. A., Abdelkareem, M. A., & Nassef, A. M. (2019). Identifying optimal operating conditions of solar-driven silica gel based adsorption desalination cooling system via modern optimization. Solar Energy, 181, 475-489, doi: 10.1016/j.solener.2019.02.024.##
[6]. Kamel, A. A., Rezk, H., & Abdelkareem, M. A. (2021). Enhancing the operation of fuel cell-photovoltaic-battery-supercapacitor renewable system through a hybrid energy management strategy. International Journal of Hydrogen Energy, 46(8), 6061-6075, doi: 10.1016/j.ijhydene.2020.06.052.##
[7]. Ojaghi H., Simjoo M., Shahin M., & Chahardowli M., Geothermal energy extraction using abandoned oil and gas wells: TechNo-ecoNomic review, The 12th International Chemical Engineering Congress & Exhibition (IChEC 2023).##
[8]. Mahmoud, M., Ramadan, M., Olabi, A. G., Pullen, K., & Naher, S. (2020). A review of mechanical energy storage systems combined with wind and solar applications. Energy Conversion and Management, 210, 112670, doi: 10.1016/j.enconman.2020.112670.##
[9]. Soudan, B. (2019). Community-scale baseload generation from marine energy. Energy, 189, 116134, doi: 10.1016/j.energy.2019.116134.##
[10]. Inayat, A., Nassef, A. M., Rezk, H., Sayed, E. T., Abdelkareem, M. A., & Olabi, A. G. (2019). Fuzzy modeling and parameters optimization for the enhancement of biodiesel production from waste frying oil over montmorillonite clay K-30. Science of the Total Environment, 666, 821-827, doi: 10.1016/j.scitotenv.2019.02.321.##
[11]. Hussain, N., Abdelkareem, M. A., Alawadhi, H., Alaswad, A., & Sayed, E. T. (2021). Two dimensional Cu based nanocomposite materials for direct urea fuel cell. International Journal of Hydrogen Energy, 46(8), 6051-6060, doi: 10.1016/j.ijhydene.2020.06.293.##
[12]. Kouhi, M. M., Kahzadvand, K., Shahin, M., & Shafiei, A. (2025). New connectionist tools for prediction of CO2 diffusion coefficient in brine at high pressure and temperature─ implications for CO2 sequestration in deep saline aquifers. Fuel, 384, 134000, doi: 10.1016/j.fuel.2024.134000.##
[13]. Lehtola, T., & Zahedi, A. (2019). Solar energy and wind power supply supported by storage technology: A review. Sustainable Energy Technologies and Assessments, 35, 25-31, doi: 10.1016/j.seta.2019.05.013.##
[14]. Shaqsi, A. Z. A., Sopian, K., & Al-Hinai, A. (2020). Review of energy storage services, applications, limitations, and benefits. Energy Reports, 6, 288-306, doi: 10.1016/j.egyr.2020.07.028.##
[15]. Shahin, M., & Simjoo, M. (2025). Potential applications of innovative AI-based tools in hydrogen energy development: Leveraging large language model technologies. International Journal of Hydrogen Energy, 102, 918-936, doi: 10.1016/j.ijhydene.2025.01.066.##
[16]. Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy, 44(29), 15072-15086, doi: 10.1016/j.ijhydene.2019.04.068.##
[17]. M. Shahin and M. Simjoo, Leveraging Large Language Models and Generative AI in Pore-Scale Modeling for Enhanced Hydrogen and Carbon Storage, 1st Iran InterPore Conference, Tehran, Iran, 2024.##
[18]. Matos, C. R., Carneiro, J. F., & Silva, P. P. (2019). Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification. Journal of Energy Storage, 21, 241-258, doi: 10.1016/j.est.2018.11.023.##
[19]. Tarkowski, R. (2019). Underground hydrogen storage: Characteristics and prospects. Renewable and Sustainable Energy Reviews, 105, 86-94, doi: 10.1016/j.rser.2019.01.051.##
[20]. Enerdata. 2022 Edition: Annual benchmarks and long-term impacts, 2022. [Online]. Available: https://www.enerdata.net/publications/reports-presentations/world-energy-trends.html##
[21]. Hematpur, H., Abdollahi, R., Rostami, S., Haghighi, M., & Blunt, M. J. (2023). Review of underground hydrogen storage: Concepts and challenges. Advances in Geo-Energy Research, 7(2), 111-131, doi: 10.46690/ager.2023.02.05.##
[22]. Ansari, D. (2022). The hydrogen ambitions of the Gulf States: Achieving economic diversification while maintaining power. doi.org/10.18449/2022C44.##
[23]. Salahshoor, S., & Afzal, S. (2022). Subsurface technologies for hydrogen production from fossil fuel resources: A review and techno-economic analysis. International Journal of Hydrogen Energy, doi: 10.1016/j.ijhydene.2022.08.202.
[24]. Office of Fossil Energy, U.S.D.o.E. Hydrogen strategy enabling a low-carbon ecoNomy, 2020.##
[25]. Lamb, J. J., Hillestad, M., Rytter, E., Bock, R., Nordgård, A. S., Lien, K. M., Burheim, O.S. & Pollet, B. G. (2020). Traditional routes for hydrogen production and carbon conversion. In Hydrogen, biomass and bioenergy (pp. 21-53). Academic Press. doi: 10.1016/B978-0-08-102629-8.00003-7.##
[26]. Minh, D. P., Siang, T. J., Vo, D. V. N., Phan, T. S., Ridart, C., Nzihou, A., & Grouset, D. (2018). Hydrogen production from biogas reforming: An overview of steam reforming, dry reforming, dual reforming, and tri-reforming of methane. Hydrogen Supply Chains, 111-166. doi: 10.1016/B978-0-12-811197-0.00004-X.##
[27]. Sengodan, S., Lan, R., Humphreys, J., Du, D., Xu, W., Wang, H., & Tao, S. (2018). Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renewable and Sustainable Energy Reviews, 82, 761-780. doi: 10.1016/j.rser.2017.09.071.##
[28]. Liao, C. H., & Horng, R. F. (2017). Experimental study of syngas production from methane dry reforming with heat recovery strategy. International Journal of Hydrogen Energy, 42(40), 25213-25224, doi: 10.1016/j.ijhydene.2017.01.238.##
[29]. Naeem, M. A., Al-Fatesh, A. S., Fakeeha, A. H., & Abasaeed, A. E. (2014). Hydrogen production from methane dry reforming over nickel-based nanocatalysts using surfactant-assisted or polyol method. International Journal of Hydrogen Energy, 39(30), 17009-17023, doi: 10.1016/j.ijhydene.2014.08.090.##
[30]. Lee, D. H. (2015). Hydrogen production via the Kværner process and plasma reforming. In Compendium of hydrogen energy (pp. 349-391). Woodhead Publishing. doi: 10.1016/B978-1-78242-361-4.00012-1.##
[31]. Saavedra Lopez, J., Lebarbier Dagle, V., Deshmane, C. A., Kovarik, L., Wegeng, R. S., & Dagle, R. A. (2019). Methane and ethane steam reforming over MgAl2O4-supported Rh and Ir catalysts: catalytic implications for natural gas reforming application. Catalysts, 9(10), 801. doi: 10.3390/catal9100801.##
[32]. Basile, F., Fornasari, G., Trifirò, F., & Vaccari, A. (2002). Rh–Ni synergy in the catalytic partial oxidation of methane: surface phenomena and catalyst stability. Catalysis Today, 77(3), 215-223, doi: 10.1016/S0920-5861(02)00247-X.##
[33]. Peymani, M., Alavi, S. M., & Rezaei, M. (2016). Synthesis gas production by catalytic partial oxidation of methane, ethane and propane on mesoporous nanocrystalline Ni/Al2O3 catalysts. International Journal of Hydrogen Energy, 41(42), 19057-19069, doi: 10.1016/j.ijhydene.2016.07.072.##
[34]. Mota, N., Ismagilov, I. Z., Matus, E. V., Kuznetsov, V. V., Kerzhentsev, M. A., Ismagilov, Z. R., Navarro, R.M. & Fierro, J. L. G. (2016). Hydrogen production by autothermal reforming of methane over lanthanum chromites modified with Ru and Sr. International Journal of Hydrogen Energy, 41(42), 19373-19381. doi: 10.1016/j.ijhydene.2016.05.029.##
[35]. Yan, Y., Li, H., Li, L., Zhang, L., & Zhang, J. (2018). Properties of methane autothermal reforming to generate hydrogen in membrane reactor based on thermodynamic equilibrium model. Chemical Engineering and Processing-Process Intensification, 125, 311-317. doi: 10.1016/j.cep.2018.01.010.##
[36]. Bakhtyari A., Makarem M. A., & Rahimpour M. R. (2018). Hydrogen Production Through Pyrolysis, in Encyclopedia of Sustainability Science and TechNology, New York, NY: Springer New York, 1–28. doi: 10.1007/978-1-4939-2493-6_956-1.##
[37]. Ozarslan, A. (2012). Large-scale Hydrogen Energy Storage in Salt Caverns. International journal of hydrogen energy, 37(19), 14265-14277. doi: 10.1016/j.ijhydene.2012.07.111.##
[38]. Caglayan, D. G., Weber, N., Heinrichs, H. U., Linßen, J., Robinius, M., Kukla, P. A., & Stolten, D. (2020). Technical potential of salt caverns for hydrogen storage in Europe. International Journal of Hydrogen Energy, 45(11), 6793-6805. doi: 10.1016/j.ijhydene.2019.12.161.##
[39]. Lord, A. S., Kobos, P. H., & Borns, D. J. (2014). Geologic storage of hydrogen: Scaling up to meet city transportation demands. International Journal of Hydrogen Energy, 39(28), 15570-15582. doi: 10.1016/j.ijhydene.2014.07.121.##
[40]. Cihlar, J., Mavins, D., (2021). Van Der Leun, K. Picturing the Value of Underground Gas Storage to the European Hydrogen System. Chicago, USA, Guidehouse.##
[41]. Peng, H., Fan, J., Zhang, X., Chen, J., Li, Z., Jiang, D., & Liu, C. (2020). Computed tomography analysis on cyclic fatigue and damage properties of rock salt under gas pressure. International Journal of Fatigue, 134, 105523. doi: 10.1016/j.ijfatigue.2020.105523.##
[42]. Zhang, N., Shi, X., Zhang, Y., & Shan, P. (2020). Tightness analysis of underground natural gas and oil storage caverns with limit pillar widths in bedded rock salt. Ieee Access, 8, 12130-12145. doi: 10.1109/ACCESS.2020.2966006.##
[43]. Zivar, D., Kumar, S., & Foroozesh, J. (2021). Underground hydrogen storage: A comprehensive review. International Journal of Hydrogen Energy, 46(45), 23436-23462, doi: 10.1016/j.ijhydene.2020.08.138.##
[44]. Sáinz-García, A., Abarca, E., Rubí, V., & Grandia, F. (2017). Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer. International journal of hydrogen energy, 42(26), 16657-16666. doi: 10.1016/j.ijhydene.2017.05.076.##
[45]. Liu, W., Li, Y., Yang, C., Daemen, J. J., Yang, Y., & Zhang, G. (2015). Permeability characteristics of mudstone cap rock and interlayers in bedded salt formations and tightness assessment for underground gas storage caverns. Engineering Geology, 193, 212-223. doi: 10.1016/j.enggeo.2015.04.010.##
[46]. J. Wan, T. Peng, R. Shen, and M. J. Jurado, Numerical model and program development of TWH salt cavern construction for UGS,” J. Pet. Sci. Eng., Vol. 179, pp. 930–940, Aug. 2019, doi: 10.1016/j.petrol.2019.04.028.##
[47]. Muhammed, N. S., Haq, B., Al Shehri, D., Al-Ahmed, A., Rahman, M. M., & Zaman, E. (2022). A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Reports, 8, 461-499. doi: 10.1016/j.egyr.2021.12.002.##
[48]. Lux, K. H. (2009). Design of salt caverns for the storage of natural gas, crude oil and compressed air: Geomechanical aspects of construction, Operation and Abandonment. doi: 10.1144/SP313.7.##
[49]. Luboń, K., & Tarkowski, R. (2020). Numerical simulation of hydrogen injection and withdrawal to and from a deep aquifer in NW Poland. International journal of hydrogen energy, 45(3), 2068-2083. doi: 10.1016/j.ijhydene.2019.11.055.##
[50]. Crotogino, F., Donadei, S., Bünger, U., & Landinger, H. (2010, May). Large-scale hydrogen underground storage for securing future energy supplies. In 18th World Hydrogen Energy Conference (Vol. 78, pp. 37-45).##
[51]. Böttcher, N., Görke, U. J., Kolditz, O., & Nagel, T. (2017). Thermo-mechanical investigation of salt caverns for short-term hydrogen storage. Environmental Earth Sciences, 76, 1-13. doi: 10.1007/s12665-017-6414-2.##
[52]. Juez-Larré, J., Van Gessel, S., Dalman, R., Remmelts, G., & Groenenberg, R. (2019). Assessment of underground energy storage potential to support the energy transition in the Netherlands. First Break, 37(7), 57-66. doi: 10.3997/1365-2397.n0039.##
[53]. Le Duigou, A., Bader, A. G., Lanoix, J. C., & Nadau, L. (2017). Relevance and costs of large scale underground hydrogen storage in France. International Journal of Hydrogen Energy, 42(36), 22987-23003. doi: 10.1016/j.ijhydene.2017.06.239.##
[54]. Miocic, J., Heinemann, N., Edlmann, K., Scafidi, J., Molaei, F., & Alcalde, J. (2023). Underground hydrogen storage: a review. doi: 10.1144/SP528-2022-88.##
[55]. Saeed, M., & Jadhawar, P. (2024). Modelling underground hydrogen storage: A state-of-the-art review of fundamental approaches and findings. Gas Science and Engineering, 121, 205196. doi: 10.1016/j.jgsce.2023.205196.##
[56]. Toleukhanov, A., Panfilov, M., & Kaltayev, A. (2015). Storage of hydrogenous gas mixture in geological formations: Self-organisation in presence of chemotaxis. International Journal of Hydrogen Energy, 40(46), 15952-15962. doi: 10.1016/j.ijhydene.2015.10.033.##
[57]. Ganzer, L., Reitenbach, V., Pudlo, D., Panfilov, M., Albrecht, D., & Gaupp, R. (2013, June). The H2STORE project-experimental and numerical simulation approach to investigate processes in underground hydrogen reservoir storage. In SPE Europec featured at EAGE Conference and Exhibition? (pp. SPE-164936). SPE. doi: 10.2118/164936-MS.##
[58]. Pichler, M. (2019, April). Underground sun storage results and outlook. In EAGE/DGMK joint workshop on underground storage of hydrogen (Vol. 2019, No. 1, pp. 1-4). European Association of Geoscientists & Engineers.. doi: 10.3997/2214-4609.201900257.##
[59]. Hemme, C., & Van Berk, W. (2018). Hydrogeochemical modeling to identify potential risks of underground hydrogen storage in depleted gas fields. Applied Sciences, 8(11), 2282. doi: 10.3390/app8112282.##
[60]. JScafidi, J., Wilkinson, M., Gilfillan, S. M., Heinemann, N., & Haszeldine, R. S. (2021). A quantitative assessment of the hydrogen storage capacity of the UK continental shelf. International Journal of Hydrogen Energy, 46(12), 8629-8639. doi: 10.1016/j.ijhydene.2020.12.106.##
[61]. Panfilov, M. (2016). Underground and pipeline hydrogen storage. In Compendium of Hydrogen Energy (pp. 91-115). Woodhead Publishing. doi: 10.1016/B978-1-78242-362-1.00004-3.##
[62]. Liebscher, A., Wackerl, J., & Streibel, M. (2016). Geologic storage of hydrogen–fundamentals, processing, and projects. Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, 629-658. doi: 10.1002/9783527674268.ch26.##
[63]. Pei, M., Petäjäniemi, M., Regnell, A., & Wijk, O. (2020). Toward a fossil free future with HYBRIT: Development of iron and steelmaking technology in Sweden and Finland. Metals, 10(7), 972. doi: 10.3390/met10070972.##
[64]. Lalanne, P., & Byrne, P. (2019). Large-scale pumped thermal electricity storages—converting energy using shallow lined rock caverns, carbon dioxide and underground pumped-hydro. Applied Sciences, 9(19), 4150. doi: 10.3390/app9194150.##
[65]. P. Hoffmann, The Forever Fuel. Routledge, 2019. doi: 10.4324/9780429311000.
[66]. Aziz, M. (2021). Liquid hydrogen: A review on liquefaction, storage, transportation, and safety. Energies, 14(18), 5917. doi: 10.3390/en14185917.##
[67]. Hassanpouryouzband, A., Joonaki, E., Edlmann, K., Heinemann, N., & Yang, J. (2020). Thermodynamic and transport properties of hydrogen containing streams. Scientific Data, 7(1), 222. doi: 10.1038/s41597-020-0568-6.##
[68]. Bai, M., Song, K., Sun, Y., He, M., Li, Y., & Sun, J. (2014). An overview of hydrogen underground storage technology and prospects in China. Journal of Petroleum Science and Engineering, 124, 132-136. doi: 10.1016/j.petrol.2014.09.037.##
[69]. Lassin, A., Dymitrowska, M., & Azaroual, M. (2011). Hydrogen solubility in pore water of partially saturated argillites: Application to Callovo-Oxfordian clayrock in the context of a nuclear waste geological disposal. Physics and Chemistry of the Earth, Parts A/B/C, 36(17-18), 1721-1728. doi: 10.1016/j.pce.2011.07.092.##
[70]. Kampman, N., Busch, A., Bertier, P., Snippe, J., Hangx, S., Pipich, V., Di, Z., Rother, G., Harrington, J.F., Evans, J.P. & Bickle, M. J. (2016). Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks. Nature Communications, 7(1), 12268. doi: 10.1038/ncomms12268.##
[71]. Reitenbach, V., Ganzer, L., Albrecht, D., & Hagemann, B. (2015). Influence of added hydrogen on underground gas storage: a review of key issues. Environmental Earth Sciences, 73, 6927-6937. doi: 10.1007/s12665-015-4176-2.##
[72]. Truche, L., Jodin-Caumon, M. C., Lerouge, C., Berger, G., Mosser-Ruck, R., Giffaut, E., & Michau, N. (2013). Sulphide mineral reactions in clay-rich rock induced by high hydrogen pressure. Application to disturbed or natural settings up to 250 C and 30 bar. Chemical Geology, 351, 217-228. doi: 10.1016/j.chemgeo.2013.05.025.##
[73]. Wei, T. Y., Lim, K. L., Tseng, Y. S., & Chan, S. L. I. (2017). A review on the characterization of hydrogen in hydrogen storage materials. Renewable and Sustainable Energy Reviews, 79, 1122-1133. doi: 10.1016/j.rser.2017.05.132.##
[74]. Boschee, P. (2014). Taking on the technical challenges of sour gas processing. Oil and Gas Facilities, 3(06), 21-25. doi: 10.2118/1214-0021-OGF.##
[75]. Bihua, X., Bin, Y., & Yongqing, W. (2018). Anti-corrosion cement for sour gas (H2S-CO2) storage and production of HTHP deep wells. Applied Geochemistry, 96, 155-163. doi: 10.1016/j.apgeochem.2018.07.004.##
[76]. Flesch, S., Pudlo, D., Albrecht, D., Jacob, A., & Enzmann, F. (2018). Hydrogen underground storage—Petrographic and petrophysical variations in reservoir sandstones from laboratory experiments under simulated reservoir conditions. International Journal of Hydrogen Energy, 43(45), 20822-20835. doi: 10.1016/j.ijhydene.2018.09.112.##
[77]. Shi, Z., Jessen, K., & Tsotsis, T. T. (2020). Impacts of the subsurface storage of natural gas and hydrogen mixtures. International Journal of Hydrogen Energy, 45(15), 8757-8773. doi: 10.1016/j.ijhydene.2020.01.044.##
[78]. Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, S. J., Kallmeyer, J., Ostertag-Henning, C., Hassanpouryouzband, A., Thaysen, E.M., Strobel, G.J., Schmidt-Hattenberger, C. & Rudloff, A. (2021). Enabling large-scale hydrogen storage in porous media–the scientific challenges. Energy & Environmental Science, 14(2), 853-864. doi: 10.1039/D0EE03536J.##
[79]. Hangx, S., Bakker, E., Bertier, P., Nover, G., & Busch, A. (2015). Chemical–mechanical coupling observed for depleted oil reservoirs subjected to long-term CO2-exposure–A case study of the Werkendam natural CO2 analogue field. Earth and Planetary Science Letters, 428, 230-242. doi: 10.1016/j.epsl.2015.07.044.##
[80]. Gregory, S. P., Barnett, M. J., Field, L. P., & Milodowski, A. E. (2019). Subsurface microbial hydrogen cycling: Natural occurrence and implications for industry. Microorganisms, 7(2), 53. doi: 10.3390/microorganisms7020053.##
[81]. Thaysen, E. M., McMahon, S., Strobel, G. J., Butler, I. B., Ngwenya, B. T., Heinemann, N., Wilkinson, M., Hassanpouryouzband, A., McDermott, C.I. & Edlmann, K. (2021). Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media. Renewable and Sustainable Energy Reviews, 151, 111481., doi: 10.1016/j.rser.2021.111481.##
[82], Dopffel, N., Jansen, S., & Gerritse, J. (2021). Microbial side effects of underground hydrogen storage–Knowledge gaps, risks and opportunities for successful implementation. International Journal of Hydrogen Energy, 46(12), 8594-8606. doi: 10.1016/j.ijhydene.2020.12.058.##
[83]. Kryachko, Y. (2018). Novel approaches to microbial enhancement of oil recovery. Journal of Biotechnology, 266, 118-123. doi: 10.1016/j.jbiotec.2017.12.019.##
[84]. Gaol, C., Wegner, J., Ganzer, L., Dopffel, N., Koegler, F., Borovina, A., & Alkan, H. (2019, June). Investigation of pore-scale mechanisms of microbial enhanced oil recovery MEOR using microfluidics application. In SPE Europec featured at EAGE Conference and Exhibition? (p. D041S010R002). SPE. doi: 10.2118/195553-MS.##
[85]. Amigáň, P., Greksak, M., Kozánková, J., Buzek, F., Onderka, V., & Wolf, I. (1990). Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir. FEMS Microbiology Ecology, 6(3), 221-224. doi: 10.1111/j.1574-6968.1990.tb03944.x.##
[86]. Pérez, A., Pérez, E., Dupraz, S., & Bolcich, J. (2016, June). Patagonia wind-hydrogen project: underground storage and methanation. In 21st World Hydrogen Energy Conference 2016.##
[87]. Ali, I., Hasan, S. Z., Hozaifa, M., Imanova, G., & Kurniawan, T. A. (2024). Recent Advances in Hydrogen Storage Methods. Green Hydrogen Economy for Environmental Sustainability. Volume 2: Applications, Challenges, and Policies, 135-179. doi: 10.1021/bk-2024-1474.ch007.##
[88]. Ajibona, A. I., & Pandey, R. (2024, June). Evaluating Caprock Integrity During Underground Hydrogen Storage (UHS) in Subsurface Rocks. In ARMA US Rock Mechanics/Geomechanics Symposium (p. D031S033R003). ARMA. doi: 10.56952/ARMA-2024-0601.##
[89]. Dilshan, R. A. D. P., Perera, M. S. A., & Matthai, S. K. (2024). Effect of mechanical weakening and crack formation on caprock integrity during underground hydrogen storage in depleted gas reservoirs–A comprehensive review. Fuel, 371, 131893. doi: 10.1016/j.fuel.2024.131893.##
[90]. BloombergNEF. The Hydrogen EcoNomy Outlook. March 2020.##
[91]. Zapf, D., Staudtmeister, K., Rokahr, R. B., Donadei, S., Zander-Schiebenhöfer, D., Horvath, P. L., Fleig, S., Pollok, L., Hölzner, M. & Hammer, J. (2015, June). Salt structure information system (InSpEE) as a supporting tool for evaluation of storage capacity of caverns for renewable energies-rock mechanical design for CAES and H2 storage caverns. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-2015). ARMA.##
[92]. Deveci, M. (2018). Site selection for hydrogen underground storage using interval type-2 hesitant fuzzy sets. International Journal of Hydrogen Energy, 43(19), 9353-9368. doi: 10.1016/j.ijhydene.2018.03.127.##
[93]. Lewandowska-Śmierzchalska, J., Tarkowski, R., & Uliasz-Misiak, B. (2018). Screening and ranking framework for underground hydrogen storage site selection in Poland. International Journal of Hydrogen Energy, 43(9), 4401-4414. doi: 10.1016/j.ijhydene.2018.01.089.##
[94]. Nemati, B., Mapar, M., Davarazar, P., Zandi, S., Davarazar, M., Jahanianfard, D., & Mohammadi, M. (2020). A Sustainable Approach for Site Selection of Underground Hydrogen Storage Facilities Using Fuzzy-Delphi Methodology. Journal of Settlements & Spatial Planning. doi: 10.24193/JSSPSI.2020.6.02.##
[95]. Tarkowski, R., & Czapowski, G. (2018). Salt domes in Poland–Potential sites for hydrogen storage in caverns. International Journal of Hydrogen Energy, 43(46), 21414-21427. doi: 10.1016/j.ijhydene.2018.09.212.##
[96]. Taie, Z., Villaverde, G., Morris, J. S., Lavrich, Z., Chittum, A., White, K., & Hagen, C. (2021). Hydrogen for heat: Using underground hydrogen storage for seasonal energy shifting in northern climates. International Journal of Hydrogen Energy, 46(5), 3365-3378. doi: 10.1016/j.ijhydene.2020.10.236.##
[97]. Lemieux, A., Shkarupin, A., & Sharp, K. (2020). Geologic feasibility of underground hydrogen storage in Canada. International Journal of Hydrogen Energy, 45(56), 32243-32259. doi: 10.1016/j.ijhydene.2020.08.244.##