ذخیره‌سازی زیرزمینی هیدروژن: گامی ضروری برای دست‌یابی به اهداف انتشار کربن صفر

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی نفت و گاز، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

گذار انرژی مسیری برای تغییر اقتصاد جهانی از وابستگی فعلی آن به سوخت‌های فسیلی به‌سمت انتشار صفر خالص دی اکسید کربن است. این امر مستلزم استقرار سریع و در مقیاس بزرگ انرژی‌های تجدیدپذیر است. با این حال، بیشتر انرژی‌های تجدیدپذیر مانند باد و خورشید متناوب هستند و از این رو روند تولید و تقاضای این نوع از انرژی‌ها لزوماً با هم مطابقت ندارند. ذخیره‌سازی انرژی در قالب حامل‌های انرژی پایدار مانند هیدروژن، می‌تواند راه‌حل کلیدی برای غلبۀ بر این مشکل باشد. ذخیره‌سازی زیرزمینی هیدروژن در ساختارهای طبیعی مانند غارهای نمکی و یا سنگ های متخلخل، روشی کارآمد و ایمن برای ذخیره‌سازی این منبع انرژی پاک در مقیاس بزرگ به‌شمار می‌رود. این روش پیش‌تر برای ذخیره‌سازی گاز طبیعی و دی‌اکسید کربن نیز مورد استفاده قرار گرفته است. با وجود مزایای قابل توجه، چالش‌هایی مانند نشت هیدروژن، هزینه‌های بالا و کمبود دانش و تجربه در این‌زمینه وجود دارد. با این حال، تلاش‌های گسترده‌ای برای رفع این چالش‌ها و توسعه فن‌آوری‌های ذخیره‌سازی هیدروژن در حال انجام است. سرمایه‌گذاری‌های دولتی و خصوصی در این‌زمینه در حال افزایش است و پروژه‌های آزمایشی متعددی در سراسر جهان به‌ویژه در منطقه خاورمیانه در حال اجرا است. با غلبه بر چالش‌های موجود و توسعۀ فن‌آوری‌های نوین می‌توان از این روش به‌عنوان راه حلی پایدار و کارآمد برای ذخیره‌سازی مازاد انرژی تولیدی از منابع تجدیدپذیر و ترویج استفاده از آن‌ها در سراسر جهان استفاده کرد. در این مقاله، به مرور مفاهیم و چالش‌های مرتبط با انرژی هیدروژن و ذخیره‌سازی زیرزمینی آن پرداخته شده است. همچنین، با اشاره به پروژه‌های ذخیره‌سازی موجود در دنیا، وضعیت فعلی فن‌آوری در حوزه هیدروژن مورد بررسی قرار گرفته و پیشنهاداتی برای کارهای آینده در این‌زمینه ارائه شده است .علاوه‌براین، معیارهای انتخاب مکان مناسب به‌منظور ذخیره‌سازی هیدروژن با توجه به تجربیات میدانی فعلی مورد بررسی قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Underground Hydrogen Storage: An Essential Step to Achieving Net-Zero Carbon Goals

نویسندگان [English]

  • Matin Shahin
  • Mohammad Simjoo
Faculty of Petroleum and Natural Gas Engineering, Sahand University of Technology, Tabriz, Iran
چکیده [English]

The energy transition is a pathway to transform the global economy from its current reliance on fossil fuels to one with net-zero carbon dioxide emissions. This necessitates the rapid and large-scale deployment of renewable energy sources. However, most renewable energy sources, such as wind and solar, are intermittent and their production does not necessarily match demand. Moreover, energy storage in the form of sustainable energy carriers, such as hydrogen, is a key solution to overcome this challenge. Furthermore, underground hydrogen storage in natural formations such as salt caverns and porous rocks is an efficient and safe method for storing this clean energy source on a large scale. This method has also been used previously for storing natural gas and carbon dioxide. Despite its significant advantages, there are challenges such as hydrogen leakage, high costs, and a lack of knowledge and experience in this field. However, extensive efforts are underway to address these challenges and develop hydrogen storage technologies. Government and private investment in this area is increasing and several pilot projects are underway around the world, particularly in the Middle East. By overcoming existing challenges and developing new technologies, this method can be used as a sustainable and efficient solution for storing excess energy produced from renewable sources and promoting their use worldwide. This paper reviews the concepts and challenges associated with hydrogen energy and its underground storage. It also examines the current state of technology in the field of hydrogen, with reference to existing storage projects around the world, and provides recommendations for future work in this area. In addition, site selection criteria for hydrogen storage are reviewed based on current field experiences.

کلیدواژه‌ها [English]

  • Hydrogen Energy
  • Underground Hydrogen Storage
  • Energy Transition
  • Sustainable Energy
  • Renewable Energy
[1]. Iordache, I., Schitea, D., Gheorghe, A. V., & Iordache, M. (2014). Hydrogen underground storage in Romania, potential directions of development, stakeholders and general aspects. International Journal of Hydrogen Energy, 39(21), 11071-11081, doi: 10.1016/j.ijhydene.2014.05.067.##
[2]. Akbari Sene, R., Rahmani, F., Moradi, G., & Sharifnia, S. (2020). Immobilization of TiO2 nanoparticles over treated natural aluminasilicate for hydrogen production: Effect of support treatment and operational conditions of process. Journal of Petroleum Research, 30(99-2), 14-30, doi: 10.22078/pr.2020.3827.2743.##
[3]. Rusman, N. A. A., & Dahari, M. (2016). A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41(28), 12108-12126, doi: 10.1016/j.ijhydene.2016.05.244.##
[4]. Zhan, L., Bo, Y., Lin, T., & Fan, Z. (2021). Development and outlook of advanced nuclear energy technology. Energy Strategy Reviews, 34, 100630, doi: 10.1016/j.esr.2021.100630.##
[5]. Rezk, H., Alsaman, A. S., Al-Dhaifallah, M., Askalany, A. A., Abdelkareem, M. A., & Nassef, A. M. (2019). Identifying optimal operating conditions of solar-driven silica gel based adsorption desalination cooling system via modern optimization. Solar Energy, 181, 475-489, doi: 10.1016/j.solener.2019.02.024.##
[6]. Kamel, A. A., Rezk, H., & Abdelkareem, M. A. (2021). Enhancing the operation of fuel cell-photovoltaic-battery-supercapacitor renewable system through a hybrid energy management strategy. International Journal of Hydrogen Energy, 46(8), 6061-6075, doi: 10.1016/j.ijhydene.2020.06.052.##
[7]. Ojaghi H., Simjoo M., Shahin M., & Chahardowli M., Geothermal energy extraction using abandoned oil and gas wells: TechNo-ecoNomic review, The 12th International Chemical Engineering Congress & Exhibition (IChEC 2023).##
[8]. Mahmoud, M., Ramadan, M., Olabi, A. G., Pullen, K., & Naher, S. (2020). A review of mechanical energy storage systems combined with wind and solar applications. Energy Conversion and Management, 210, 112670, doi: 10.1016/j.enconman.2020.112670.##
[9]. Soudan, B. (2019). Community-scale baseload generation from marine energy. Energy, 189, 116134, doi: 10.1016/j.energy.2019.116134.##
[10]. Inayat, A., Nassef, A. M., Rezk, H., Sayed, E. T., Abdelkareem, M. A., & Olabi, A. G. (2019). Fuzzy modeling and parameters optimization for the enhancement of biodiesel production from waste frying oil over montmorillonite clay K-30. Science of the Total Environment, 666, 821-827, doi: 10.1016/j.scitotenv.2019.02.321.##
[11]. Hussain, N., Abdelkareem, M. A., Alawadhi, H., Alaswad, A., & Sayed, E. T. (2021). Two dimensional Cu based nanocomposite materials for direct urea fuel cell. International Journal of Hydrogen Energy, 46(8), 6051-6060, doi: 10.1016/j.ijhydene.2020.06.293.##
[12]. Kouhi, M. M., Kahzadvand, K., Shahin, M., & Shafiei, A. (2025). New connectionist tools for prediction of CO2 diffusion coefficient in brine at high pressure and temperature─ implications for CO2 sequestration in deep saline aquifers. Fuel, 384, 134000, doi: 10.1016/j.fuel.2024.134000.##
[13]. Lehtola, T., & Zahedi, A. (2019). Solar energy and wind power supply supported by storage technology: A review. Sustainable Energy Technologies and Assessments, 35, 25-31, doi: 10.1016/j.seta.2019.05.013.##
[14]. Shaqsi, A. Z. A., Sopian, K., & Al-Hinai, A. (2020). Review of energy storage services, applications, limitations, and benefits. Energy Reports, 6, 288-306, doi: 10.1016/j.egyr.2020.07.028.##
[15]. Shahin, M., & Simjoo, M. (2025). Potential applications of innovative AI-based tools in hydrogen energy development: Leveraging large language model technologies. International Journal of Hydrogen Energy, 102, 918-936, doi: 10.1016/j.ijhydene.2025.01.066.##
[16]. Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy, 44(29), 15072-15086, doi: 10.1016/j.ijhydene.2019.04.068.##
[17]. M. Shahin and M. Simjoo, Leveraging Large Language Models and Generative AI in Pore-Scale Modeling for Enhanced Hydrogen and Carbon Storage, 1st Iran InterPore Conference, Tehran, Iran, 2024.##
[18]. Matos, C. R., Carneiro, J. F., & Silva, P. P. (2019). Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification. Journal of Energy Storage, 21, 241-258, doi: 10.1016/j.est.2018.11.023.##
[19]. Tarkowski, R. (2019). Underground hydrogen storage: Characteristics and prospects. Renewable and Sustainable Energy Reviews, 105, 86-94, doi: 10.1016/j.rser.2019.01.051.##
[20]. Enerdata. 2022 Edition: Annual benchmarks and long-term impacts, 2022. [Online]. Available: https://www.enerdata.net/publications/reports-presentations/world-energy-trends.html##
[21]. Hematpur, H., Abdollahi, R., Rostami, S., Haghighi, M., & Blunt, M. J. (2023). Review of underground hydrogen storage: Concepts and challenges. Advances in Geo-Energy Research, 7(2), 111-131, doi: 10.46690/ager.2023.02.05.##
[22]. Ansari, D. (2022). The hydrogen ambitions of the Gulf States: Achieving economic diversification while maintaining power. doi.org/10.18449/2022C44.##
[23]. Salahshoor, S., & Afzal, S. (2022). Subsurface technologies for hydrogen production from fossil fuel resources: A review and techno-economic analysis. International Journal of Hydrogen Energy, doi: 10.1016/j.ijhydene.2022.08.202.
[24]. Office of Fossil Energy, U.S.D.o.E. Hydrogen strategy enabling a low-carbon ecoNomy, 2020.##
[25]. Lamb, J. J., Hillestad, M., Rytter, E., Bock, R., Nordgård, A. S., Lien, K. M., Burheim, O.S. & Pollet, B. G. (2020). Traditional routes for hydrogen production and carbon conversion. In Hydrogen, biomass and bioenergy (pp. 21-53). Academic Press. doi: 10.1016/B978-0-08-102629-8.00003-7.##
[26]. Minh, D. P., Siang, T. J., Vo, D. V. N., Phan, T. S., Ridart, C., Nzihou, A., & Grouset, D. (2018). Hydrogen production from biogas reforming: An overview of steam reforming, dry reforming, dual reforming, and tri-reforming of methane. Hydrogen Supply Chains, 111-166. doi: 10.1016/B978-0-12-811197-0.00004-X.##
[27]. Sengodan, S., Lan, R., Humphreys, J., Du, D., Xu, W., Wang, H., & Tao, S. (2018). Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renewable and Sustainable Energy Reviews, 82, 761-780. doi: 10.1016/j.rser.2017.09.071.##
[28]. Liao, C. H., & Horng, R. F. (2017). Experimental study of syngas production from methane dry reforming with heat recovery strategy. International Journal of Hydrogen Energy, 42(40), 25213-25224, doi: 10.1016/j.ijhydene.2017.01.238.##
[29]. Naeem, M. A., Al-Fatesh, A. S., Fakeeha, A. H., & Abasaeed, A. E. (2014). Hydrogen production from methane dry reforming over nickel-based nanocatalysts using surfactant-assisted or polyol method. International Journal of Hydrogen Energy, 39(30), 17009-17023, doi: 10.1016/j.ijhydene.2014.08.090.##
[30]. Lee, D. H. (2015). Hydrogen production via the Kværner process and plasma reforming. In Compendium of hydrogen energy (pp. 349-391). Woodhead Publishing. doi: 10.1016/B978-1-78242-361-4.00012-1.##
[31]. Saavedra Lopez, J., Lebarbier Dagle, V., Deshmane, C. A., Kovarik, L., Wegeng, R. S., & Dagle, R. A. (2019). Methane and ethane steam reforming over MgAl2O4-supported Rh and Ir catalysts: catalytic implications for natural gas reforming application. Catalysts, 9(10), 801. doi: 10.3390/catal9100801.##
[32]. Basile, F., Fornasari, G., Trifirò, F., & Vaccari, A. (2002). Rh–Ni synergy in the catalytic partial oxidation of methane: surface phenomena and catalyst stability. Catalysis Today, 77(3), 215-223, doi: 10.1016/S0920-5861(02)00247-X.##
[33]. Peymani, M., Alavi, S. M., & Rezaei, M. (2016). Synthesis gas production by catalytic partial oxidation of methane, ethane and propane on mesoporous nanocrystalline Ni/Al2O3 catalysts. International Journal of Hydrogen Energy, 41(42), 19057-19069, doi: 10.1016/j.ijhydene.2016.07.072.##
[34]. Mota, N., Ismagilov, I. Z., Matus, E. V., Kuznetsov, V. V., Kerzhentsev, M. A., Ismagilov, Z. R., Navarro, R.M. & Fierro, J. L. G. (2016). Hydrogen production by autothermal reforming of methane over lanthanum chromites modified with Ru and Sr. International Journal of Hydrogen Energy, 41(42), 19373-19381. doi: 10.1016/j.ijhydene.2016.05.029.##
[35]. Yan, Y., Li, H., Li, L., Zhang, L., & Zhang, J. (2018). Properties of methane autothermal reforming to generate hydrogen in membrane reactor based on thermodynamic equilibrium model. Chemical Engineering and Processing-Process Intensification, 125, 311-317. doi: 10.1016/j.cep.2018.01.010.##
[36]. Bakhtyari A., Makarem M. A., & Rahimpour M. R. (2018). Hydrogen Production Through Pyrolysis, in Encyclopedia of Sustainability Science and TechNology, New York, NY: Springer New York, 1–28. doi: 10.1007/978-1-4939-2493-6_956-1.##
[37]. Ozarslan, A. (2012). Large-scale Hydrogen Energy Storage in Salt Caverns. International journal of hydrogen energy, 37(19), 14265-14277. doi: 10.1016/j.ijhydene.2012.07.111.##
[38]. Caglayan, D. G., Weber, N., Heinrichs, H. U., Linßen, J., Robinius, M., Kukla, P. A., & Stolten, D. (2020). Technical potential of salt caverns for hydrogen storage in Europe. International Journal of Hydrogen Energy, 45(11), 6793-6805. doi: 10.1016/j.ijhydene.2019.12.161.##
[39]. Lord, A. S., Kobos, P. H., & Borns, D. J. (2014). Geologic storage of hydrogen: Scaling up to meet city transportation demands. International Journal of Hydrogen Energy, 39(28), 15570-15582. doi: 10.1016/j.ijhydene.2014.07.121.##
[40]. Cihlar, J., Mavins, D., (2021). Van Der Leun, K. Picturing the Value of Underground Gas Storage to the European Hydrogen System. Chicago, USA, Guidehouse.##
[41]. Peng, H., Fan, J., Zhang, X., Chen, J., Li, Z., Jiang, D., & Liu, C. (2020). Computed tomography analysis on cyclic fatigue and damage properties of rock salt under gas pressure. International Journal of Fatigue, 134, 105523. doi: 10.1016/j.ijfatigue.2020.105523.##
[42]. Zhang, N., Shi, X., Zhang, Y., & Shan, P. (2020). Tightness analysis of underground natural gas and oil storage caverns with limit pillar widths in bedded rock salt. Ieee Access, 8, 12130-12145. doi: 10.1109/ACCESS.2020.2966006.##
[43]. Zivar, D., Kumar, S., & Foroozesh, J. (2021). Underground hydrogen storage: A comprehensive review. International Journal of Hydrogen Energy, 46(45), 23436-23462, doi: 10.1016/j.ijhydene.2020.08.138.##
[44]. Sáinz-García, A., Abarca, E., Rubí, V., & Grandia, F. (2017). Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer. International journal of hydrogen energy, 42(26), 16657-16666. doi: 10.1016/j.ijhydene.2017.05.076.##
[45]. Liu, W., Li, Y., Yang, C., Daemen, J. J., Yang, Y., & Zhang, G. (2015). Permeability characteristics of mudstone cap rock and interlayers in bedded salt formations and tightness assessment for underground gas storage caverns. Engineering Geology, 193, 212-223. doi: 10.1016/j.enggeo.2015.04.010.##
[46]. J. Wan, T. Peng, R. Shen, and M. J. Jurado, Numerical model and program development of TWH salt cavern construction for UGS,” J. Pet. Sci. Eng., Vol. 179, pp. 930–940, Aug. 2019, doi: 10.1016/j.petrol.2019.04.028.##
[47]. Muhammed, N. S., Haq, B., Al Shehri, D., Al-Ahmed, A., Rahman, M. M., & Zaman, E. (2022). A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Reports, 8, 461-499. doi: 10.1016/j.egyr.2021.12.002.##
[48]. Lux, K. H. (2009). Design of salt caverns for the storage of natural gas, crude oil and compressed air: Geomechanical aspects of construction, Operation and Abandonment. doi: 10.1144/SP313.7.##
[49]. Luboń, K., & Tarkowski, R. (2020). Numerical simulation of hydrogen injection and withdrawal to and from a deep aquifer in NW Poland. International journal of hydrogen energy, 45(3), 2068-2083. doi: 10.1016/j.ijhydene.2019.11.055.##
[50]. Crotogino, F., Donadei, S., Bünger, U., & Landinger, H. (2010, May). Large-scale hydrogen underground storage for securing future energy supplies. In 18th World Hydrogen Energy Conference (Vol. 78, pp. 37-45).##
[51]. Böttcher, N., Görke, U. J., Kolditz, O., & Nagel, T. (2017). Thermo-mechanical investigation of salt caverns for short-term hydrogen storage. Environmental Earth Sciences, 76, 1-13. doi: 10.1007/s12665-017-6414-2.##
[52]. Juez-Larré, J., Van Gessel, S., Dalman, R., Remmelts, G., & Groenenberg, R. (2019). Assessment of underground energy storage potential to support the energy transition in the Netherlands. First Break, 37(7), 57-66. doi: 10.3997/1365-2397.n0039.##
[53]. Le Duigou, A., Bader, A. G., Lanoix, J. C., & Nadau, L. (2017). Relevance and costs of large scale underground hydrogen storage in France. International Journal of Hydrogen Energy, 42(36), 22987-23003. doi: 10.1016/j.ijhydene.2017.06.239.##
[54]. Miocic, J., Heinemann, N., Edlmann, K., Scafidi, J., Molaei, F., & Alcalde, J. (2023). Underground hydrogen storage: a review. doi: 10.1144/SP528-2022-88.##
[55]. Saeed, M., & Jadhawar, P. (2024). Modelling underground hydrogen storage: A state-of-the-art review of fundamental approaches and findings. Gas Science and Engineering, 121, 205196. doi: 10.1016/j.jgsce.2023.205196.##
[56]. Toleukhanov, A., Panfilov, M., & Kaltayev, A. (2015). Storage of hydrogenous gas mixture in geological formations: Self-organisation in presence of chemotaxis. International Journal of Hydrogen Energy, 40(46), 15952-15962. doi: 10.1016/j.ijhydene.2015.10.033.##
[57]. Ganzer, L., Reitenbach, V., Pudlo, D., Panfilov, M., Albrecht, D., & Gaupp, R. (2013, June). The H2STORE project-experimental and numerical simulation approach to investigate processes in underground hydrogen reservoir storage. In SPE Europec featured at EAGE Conference and Exhibition? (pp. SPE-164936). SPE. doi: 10.2118/164936-MS.##
[58]. Pichler, M. (2019, April). Underground sun storage results and outlook. In EAGE/DGMK joint workshop on underground storage of hydrogen (Vol. 2019, No. 1, pp. 1-4). European Association of Geoscientists & Engineers.. doi: 10.3997/2214-4609.201900257.##
[59]. Hemme, C., & Van Berk, W. (2018). Hydrogeochemical modeling to identify potential risks of underground hydrogen storage in depleted gas fields. Applied Sciences, 8(11), 2282. doi: 10.3390/app8112282.##
[60]. JScafidi, J., Wilkinson, M., Gilfillan, S. M., Heinemann, N., & Haszeldine, R. S. (2021). A quantitative assessment of the hydrogen storage capacity of the UK continental shelf. International Journal of Hydrogen Energy, 46(12), 8629-8639. doi: 10.1016/j.ijhydene.2020.12.106.##
[61]. Panfilov, M. (2016). Underground and pipeline hydrogen storage. In Compendium of Hydrogen Energy (pp. 91-115). Woodhead Publishing. doi: 10.1016/B978-1-78242-362-1.00004-3.##
[62]. Liebscher, A., Wackerl, J., & Streibel, M. (2016). Geologic storage of hydrogen–fundamentals, processing, and projects. Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, 629-658. doi: 10.1002/9783527674268.ch26.##
[63]. Pei, M., Petäjäniemi, M., Regnell, A., & Wijk, O. (2020). Toward a fossil free future with HYBRIT: Development of iron and steelmaking technology in Sweden and Finland. Metals, 10(7), 972. doi: 10.3390/met10070972.##
[64]. Lalanne, P., & Byrne, P. (2019). Large-scale pumped thermal electricity storages—converting energy using shallow lined rock caverns, carbon dioxide and underground pumped-hydro. Applied Sciences, 9(19), 4150. doi: 10.3390/app9194150.##
[65]. P. Hoffmann, The Forever Fuel. Routledge, 2019. doi: 10.4324/9780429311000.
[66]. Aziz, M. (2021). Liquid hydrogen: A review on liquefaction, storage, transportation, and safety. Energies, 14(18), 5917. doi: 10.3390/en14185917.##
[67]. Hassanpouryouzband, A., Joonaki, E., Edlmann, K., Heinemann, N., & Yang, J. (2020). Thermodynamic and transport properties of hydrogen containing streams. Scientific Data, 7(1), 222. doi: 10.1038/s41597-020-0568-6.##
[68]. Bai, M., Song, K., Sun, Y., He, M., Li, Y., & Sun, J. (2014). An overview of hydrogen underground storage technology and prospects in China. Journal of Petroleum Science and Engineering, 124, 132-136. doi: 10.1016/j.petrol.2014.09.037.##
[69]. Lassin, A., Dymitrowska, M., & Azaroual, M. (2011). Hydrogen solubility in pore water of partially saturated argillites: Application to Callovo-Oxfordian clayrock in the context of a nuclear waste geological disposal. Physics and Chemistry of the Earth, Parts A/B/C, 36(17-18), 1721-1728. doi: 10.1016/j.pce.2011.07.092.##
[70]. Kampman, N., Busch, A., Bertier, P., Snippe, J., Hangx, S., Pipich, V., Di, Z., Rother, G., Harrington, J.F., Evans, J.P. & Bickle, M. J. (2016). Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks. Nature Communications, 7(1), 12268. doi: 10.1038/ncomms12268.##
[71]. Reitenbach, V., Ganzer, L., Albrecht, D., & Hagemann, B. (2015). Influence of added hydrogen on underground gas storage: a review of key issues. Environmental Earth Sciences, 73, 6927-6937. doi: 10.1007/s12665-015-4176-2.##
[72]. Truche, L., Jodin-Caumon, M. C., Lerouge, C., Berger, G., Mosser-Ruck, R., Giffaut, E., & Michau, N. (2013). Sulphide mineral reactions in clay-rich rock induced by high hydrogen pressure. Application to disturbed or natural settings up to 250 C and 30 bar. Chemical Geology, 351, 217-228. doi: 10.1016/j.chemgeo.2013.05.025.##
[73]. Wei, T. Y., Lim, K. L., Tseng, Y. S., & Chan, S. L. I. (2017). A review on the characterization of hydrogen in hydrogen storage materials. Renewable and Sustainable Energy Reviews, 79, 1122-1133. doi: 10.1016/j.rser.2017.05.132.##
[74]. Boschee, P. (2014). Taking on the technical challenges of sour gas processing. Oil and Gas Facilities, 3(06), 21-25. doi: 10.2118/1214-0021-OGF.##
[75]. Bihua, X., Bin, Y., & Yongqing, W. (2018). Anti-corrosion cement for sour gas (H2S-CO2) storage and production of HTHP deep wells. Applied Geochemistry, 96, 155-163. doi: 10.1016/j.apgeochem.2018.07.004.##
[76]. Flesch, S., Pudlo, D., Albrecht, D., Jacob, A., & Enzmann, F. (2018). Hydrogen underground storage—Petrographic and petrophysical variations in reservoir sandstones from laboratory experiments under simulated reservoir conditions. International Journal of Hydrogen Energy, 43(45), 20822-20835. doi: 10.1016/j.ijhydene.2018.09.112.##
[77]. Shi, Z., Jessen, K., & Tsotsis, T. T. (2020). Impacts of the subsurface storage of natural gas and hydrogen mixtures. International Journal of Hydrogen Energy, 45(15), 8757-8773. doi: 10.1016/j.ijhydene.2020.01.044.##
[78]. Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, S. J., Kallmeyer, J., Ostertag-Henning, C.,  Hassanpouryouzband, A., Thaysen, E.M., Strobel, G.J., Schmidt-Hattenberger, C. & Rudloff, A. (2021). Enabling large-scale hydrogen storage in porous media–the scientific challenges. Energy & Environmental Science, 14(2), 853-864. doi: 10.1039/D0EE03536J.##
[79]. Hangx, S., Bakker, E., Bertier, P., Nover, G., & Busch, A. (2015). Chemical–mechanical coupling observed for depleted oil reservoirs subjected to long-term CO2-exposure–A case study of the Werkendam natural CO2 analogue field. Earth and Planetary Science Letters, 428, 230-242. doi: 10.1016/j.epsl.2015.07.044.##
[80]. Gregory, S. P., Barnett, M. J., Field, L. P., & Milodowski, A. E. (2019). Subsurface microbial hydrogen cycling: Natural occurrence and implications for industry. Microorganisms, 7(2), 53. doi: 10.3390/microorganisms7020053.##
[81]. Thaysen, E. M., McMahon, S., Strobel, G. J., Butler, I. B., Ngwenya, B. T., Heinemann, N., Wilkinson, M., Hassanpouryouzband, A., McDermott, C.I. & Edlmann, K. (2021). Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media. Renewable and Sustainable Energy Reviews, 151, 111481., doi: 10.1016/j.rser.2021.111481.##
[82], Dopffel, N., Jansen, S., & Gerritse, J. (2021). Microbial side effects of underground hydrogen storage–Knowledge gaps, risks and opportunities for successful implementation. International Journal of Hydrogen Energy, 46(12), 8594-8606. doi: 10.1016/j.ijhydene.2020.12.058.##
[83]. Kryachko, Y. (2018). Novel approaches to microbial enhancement of oil recovery. Journal of Biotechnology, 266, 118-123. doi: 10.1016/j.jbiotec.2017.12.019.##
[84]. Gaol, C., Wegner, J., Ganzer, L., Dopffel, N., Koegler, F., Borovina, A., & Alkan, H. (2019, June). Investigation of pore-scale mechanisms of microbial enhanced oil recovery MEOR using microfluidics application. In SPE Europec featured at EAGE Conference and Exhibition? (p. D041S010R002). SPE. doi: 10.2118/195553-MS.##
[85]. Amigáň, P., Greksak, M., Kozánková, J., Buzek, F., Onderka, V., & Wolf, I. (1990). Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir. FEMS Microbiology Ecology, 6(3), 221-224. doi: 10.1111/j.1574-6968.1990.tb03944.x.##
[86]. Pérez, A., Pérez, E., Dupraz, S., & Bolcich, J. (2016, June). Patagonia wind-hydrogen project: underground storage and methanation. In 21st World Hydrogen Energy Conference 2016.##
[87]. Ali, I., Hasan, S. Z., Hozaifa, M., Imanova, G., & Kurniawan, T. A. (2024). Recent Advances in Hydrogen Storage Methods. Green Hydrogen Economy for Environmental Sustainability. Volume 2: Applications, Challenges, and Policies, 135-179. doi: 10.1021/bk-2024-1474.ch007.##
[88]. Ajibona, A. I., & Pandey, R. (2024, June). Evaluating Caprock Integrity During Underground Hydrogen Storage (UHS) in Subsurface Rocks. In ARMA US Rock Mechanics/Geomechanics Symposium (p. D031S033R003). ARMA. doi: 10.56952/ARMA-2024-0601.##
[89]. Dilshan, R. A. D. P., Perera, M. S. A., & Matthai, S. K. (2024). Effect of mechanical weakening and crack formation on caprock integrity during underground hydrogen storage in depleted gas reservoirs–A comprehensive review. Fuel, 371, 131893. doi: 10.1016/j.fuel.2024.131893.##
[90]. BloombergNEF. The Hydrogen EcoNomy Outlook. March 2020.##
[91]. Zapf, D., Staudtmeister, K., Rokahr, R. B., Donadei, S., Zander-Schiebenhöfer, D., Horvath, P. L., Fleig, S., Pollok, L., Hölzner, M. & Hammer, J. (2015, June). Salt structure information system (InSpEE) as a supporting tool for evaluation of storage capacity of caverns for renewable energies-rock mechanical design for CAES and H2 storage caverns. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-2015). ARMA.##
[92]. Deveci, M. (2018). Site selection for hydrogen underground storage using interval type-2 hesitant fuzzy sets. International Journal of Hydrogen Energy, 43(19), 9353-9368. doi: 10.1016/j.ijhydene.2018.03.127.##
[93]. Lewandowska-Śmierzchalska, J., Tarkowski, R., & Uliasz-Misiak, B. (2018). Screening and ranking framework for underground hydrogen storage site selection in Poland. International Journal of Hydrogen Energy, 43(9), 4401-4414. doi: 10.1016/j.ijhydene.2018.01.089.##
[94]. Nemati, B., Mapar, M., Davarazar, P., Zandi, S., Davarazar, M., Jahanianfard, D., & Mohammadi, M. (2020). A Sustainable Approach for Site Selection of Underground Hydrogen Storage Facilities Using Fuzzy-Delphi Methodology. Journal of Settlements & Spatial Planning. doi: 10.24193/JSSPSI.2020.6.02.##
[95]. Tarkowski, R., & Czapowski, G. (2018). Salt domes in Poland–Potential sites for hydrogen storage in caverns. International Journal of Hydrogen Energy, 43(46), 21414-21427. doi: 10.1016/j.ijhydene.2018.09.212.##
[96]. Taie, Z., Villaverde, G., Morris, J. S., Lavrich, Z., Chittum, A., White, K., & Hagen, C. (2021). Hydrogen for heat: Using underground hydrogen storage for seasonal energy shifting in northern climates. International Journal of Hydrogen Energy, 46(5), 3365-3378. doi: 10.1016/j.ijhydene.2020.10.236.##
[97]. Lemieux, A., Shkarupin, A., & Sharp, K. (2020). Geologic feasibility of underground hydrogen storage in Canada. International Journal of Hydrogen Energy, 45(56), 32243-32259. doi: 10.1016/j.ijhydene.2020.08.244.##