[1]. Afif, A., Radenahmad, N., Cheok, Q., Shams, S., Kim, J. H., & Azad, A. K. (2016). Ammonia-fed fuel cells: a comprehensive review. Renewable and Sustainable Energy Reviews, 60, 822-835.##
[2]. Fuerte, A., Valenzuela, R. X., Escudero, M. J., & Daza, L. (2009). Ammonia as efficient fuel for SOFC. Journal of Power Sources, 192(1), 170-174.##
[3]. Vilekar, S. A., Fishtik, I., & Datta, R. (2012). The peculiar catalytic sequence of the ammonia decomposition reaction and its steady-state kinetics. Chemical Engineering Science, 71, 333-344.##
[4]. Arriagada, J., Olausson, P., & Selimovic, A. (2002). Artificial neural network simulator for SOFC performance prediction. Journal of Power Sources, 112(1), 54-60.##
[5]. Milewski, J., & Świrski, K. (2009). Modelling the SOFC behaviours by artificial neural network. International Journal of Hydrogen Energy, 34(13), 5546-5553.##
[6]. Chaichana, K., Patcharavorachot, Y., Chutichai, B., Saebea, D., Assabumrungrat, S., & Arpornwichanop, A. (2012). Neural network hybrid model of a direct internal reforming solid oxide fuel cell. International Journal of Hydrogen Energy, 37(3), 2498-2508.##
[7]. Cheddie, D. F. (2018). Temkin-Pyzhev kinetics in intermediate temperature ammonia-fed solid oxide fuel cells (SOFCs). Int J Power Energy Res, 2(3), 43-51.##
[8]. Xu, H., Ma, J., Tan, P., Chen, B., Wu, Z., Zhang, Y., Wang, H., Xuan, J., & Ni, M. (2020). Towards online optimisation of solid oxide fuel cell performance: Combining deep learning with multi-physics simulation. Energy and AI, 1, 100003.##
[9]. Subotić, V., Eibl, M., & Hochenauer, C. (2021). Artificial intelligence for time-efficient prediction and optimization of solid oxide fuel cell performances. Energy Conversion and Management, 230, 113764.##
[10]. Manshadi, M., Ghassemi, M., Mousavi, S., Mosavi, A., & Kovacs, L. (2021). Predicting the Parameters of Vortex Bladeless Wind Turbine Using Deep Learning Method of Long Short-Term Memory. Energies 2021, 14, 4867.##
[11]. Su, D., Zheng, J., Ma, J., Dong, Z., Chen, Z., & Qin, Y. (2023). Application of machine learning in fuel cell research. Energies, 16(11), 4390.##
[12]. Omer, A., Rahimipetroudi, I., Rashid, K., Yang, J. B., Hong, J. E., & Dong, S. K. (2023). Design and performance optimization of a direct ammonia planar solid oxide fuel cell for high electrical efficiency. Journal of Power Sources, 573, 233135.##
[13]. Vairo, T., Cademartori, D., Clematis, D., Carpanese, M. P., & Fabiano, B. (2023). Solid oxide fuel cells for shipping: A machine learning model for early detection of hazardous system deviations. Process Safety and Environmental Protection, 172, 184-194.##
[14]. Buchaniec, S., Gnatowski, M., Hasegawa, H., & Brus, G. (2023). A Surrogate Model of the Butler-Volmer Equation for the Prediction of Thermodynamic Losses of Solid Oxide Fuel Cell Electrode. Energies, 16(15), 5651.##
[15]. Echabarri, S., Do, P., Vu, H. C., & Bornand, B. (2024). Machine learning and Bayesian optimization for performance prediction of proton-exchange membrane fuel cells. Energy and AI, 100380.##
[16]. Wang, J., Jiang, H., Chen. G., Wang, H., Lu, L., Liu, J. & Xing, L. (2023). Integration of multi-physics and machine learning-based surrogate modelling approaches for multi-objective optimization of deformed GDL of PEM fuel cells. Energy and AI, 14, 100261.##
[17]. Madhavan, P. V., Shahgaldi, S., & Li, X. (2024). Modelling Anti-Corrosion Coating Performance of Metallic Bipolar Plates for PEM Fuel Cells: A Machine Learning Approach. Energy and AI, 17, 10.##
[۱۸]. کیهانپور، م.، قاسمی، م. و پوربگیان، م. (۱۴۰۲). بررسی پارامتریک پیل سوختی اکسید جامد تمام متخلخل لولههای با سوخت آمونیاک و مدل سینتیکی تمکین-پیژف، نشریه مهندسی شیمی ایران، ۲۲، ۱۲۹، ۱۲۳-۱۱۰.##
[19]. Zhang, J., Xu, H., & Li, W. (2005). Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect. Applied Catalysis A: General, 296(2), 257-267.##
[۲۰]. کیهانپور، م. و قاسمی، م. (۱۴۰۱). بررسی سه بعدی کارکرد پیل سوختی پلیمری لوله ای با فرض برهم کنش سیال- جامد- گرما، روشهای عددی در مهندسی، ۴۱، ۱، ۹۹-۷۹.##
[۲۱]. کیهانپور، م. و قاسمی، م. (۱۴۰۰). شبیه سازی سه بعدی اثر هندسه و توزیع دما بر عملکرد پیل سوختی اکسید جامد، مکانیک سیالات و آیرودینامیک امام حسین (ع)، ۱۰، ۲، ۱۸۳-۱۶۹.##
[22]. Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (1996). Fundamentals of heat and mass transfer (Vol. 6). Wiley New York, 1-900.##
[23]. Ranasinghe, S. N., & Middleton, P. H. (2017). Modelling of single cell solid oxide fuel cells using COMSOL multiphysics. 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 1-6.##
[24]. Osipyan, H., Edwards, B. I., & Cheok, A. D. (2022). Deep neural network applications. CRC Press, 1-150.##