[1]. Ojelade, O. A. (2023). CO2 hydrogenation to gasoline and aromatics: mechanistic and predictive insights from DFT, DRIFTS and machine learning. ChemPlusChem, 88(9), e202300301. doi.org/10.1002/cplu.202300301.##
[2]. Martín, N., & Cirujano, F. G. (2022). Multifunctional heterogeneous catalysts for the tandem CO2 hydrogenation-Fischer Tropsch synthesis of gasoline. Journal of CO2 Utilization, 65, 102176. doi.org/10.1016/j.jcou.2022.102176.##
[3]. Gao, P., Zhang, L., Li, S., Zhou, Z., & Sun, Y. (2020). Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels. ACS Central Science, 6(10), 1657-1670. doi.org/10.1021/acscentsci.0c00976.##
[4]. Dokania, A., Ould-Chikh, S., Ramirez, A., Cerrillo, J. L., Aguilar, A., Russkikh, A., Alkhalaf, A., Hita, I., Bavykina, A., Shterk, G. & Gascon, J. (2021). Designing a multifunctional catalyst for the direct production of gasoline-range isoparaffins from CO2. JACS Au, 1(11), 1961-1974.##
[5]. Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., Zhong, L., Qiu, M., Yang, C., Cai, J. and Wei, W. & Sun, Y. (2017). Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 9(10), 1019-1024.##
[6]. Ni, Y., Chen, Z., Fu, Y., Liu, Y., Zhu, W., & Liu, Z. (2018). Selective conversion of CO2 and H2 into aromatics. Nature Communications, 9(1), 3457.##
[7]. Zhang, X., Zhang, A., Jiang, X., Zhu, J., Liu, J., Li, J., Li, J., Zhang, G., Song, C. & Guo, X. (2019). Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst. Journal of CO2 Utilization, 29, 140-145. doi.org/10.1016/j.jcou.2018.12.002.##
[8]. Song, G., Li, M., Yan, P., Nawaz, M. A., & Liu, D. (2020). High conversion to aromatics via CO2-FT over a CO-reduced Cu-Fe2O3 catalyst integrated with HZSM-5. ACS Catalysis, 10(19), 11268-11279. doi.org/10.1021/acscatal.0c02722.##
[9]. Wei, J., Yao, R., Ge, Q., Xu, D., Fang, C., Zhang, J., Xu, H. & Sun, J. (2021). Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO2 hydrogenation. Applied Catalysis B: Environmental, 283, 119648. doi.org/10.1016/j.apcatb.2020.119648.##
[10]. Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., Xu, H. & Sun, J. (2017). Directly converting CO2 into a gasoline fuel. Nature Communications, 8(1), 15174.##
[11]. Geng, S., Jiang, F., Xu, Y., & Liu, X. (2016). Iron-based Fischer–Tropsch synthesis for the efficient conversion of carbon dioxide into Isoparaffins. ChemCatChem, 8(7), 1303-1307. doi.org/10.1002/cctc.201600058.##
[12]. Dai, C., Zhao, X., Hu, B., Zhang, J., Hao, Q., Chen, H., Guo, X. & Ma, X. (2020). Hydrogenation of CO2 to aromatics over Fe–K/alkaline Al2O3 and P/ZSM-5 tandem catalysts. Industrial & Engineering Chemistry Research, 59(43), 19194-19202. doi.org/10.1021/acs.iecr.0c03598.##
[13]. Ramirez, A., Dutta Chowdhury, A., Dokania, A., Cnudde, P., Caglayan, M., Yarulina, I., Abou-Hamad, E., Gevers, L., Ould-Chikh, S., De Wispelaere, K. & Gascon, J. (2019). Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics. ACS catalysis, 9(7), 6320-6334. doi.org/10.1021/acscatal.9b01466.##
[14]. Shang, X., Liu, G., Su, X., Huang, Y., & Zhang, T. (2023). A review of the recent progress on direct heterogeneous catalytic CO2 hydrogenation to gasoline-range hydrocarbons. EES Catalysis, 1(4), 353-368. doi: 10.1039/D3EY00026E.##
[15]. Li, W., Zhang, J., Jiang, X., Mu, M., Zhang, A., Song, C., & Guo, X. (2022). Co-promoted In2O3/ZrO2 integrated with ultrathin nanosheet HZSM-5 as efficient catalysts for CO2 hydrogenation to gasoline. Industrial & Engineering Chemistry Research, 61(19), 6322-6332. doi.org/10.1021/acs.iecr.2c00460.##
[16]. Wang, X., Yang, G., Zhang, J., Song, F., Wu, Y., Zhang, T., Zhang, Q., Tsubaki, N. & Tan, Y. (2019). Macroscopic assembly style of catalysts significantly determining their efficiency for converting CO2 to gasoline. Catalysis Science & Technology, 9(19), 5401-5412. doi.org/10.1039/C9CY01470E.##
[17]. Wang, X., Zeng, C., Gong, N., Zhang, T., Wu, Y., Zhang, J., Wu, Y., Zhang, J., Song, F., Yang, G. & Tan, Y. (2021). Effective suppression of CO selectivity for CO2 hydrogenation to high-quality gasoline. Acs Catalysis, 11(3), 1528-1547. doi.org/10.1021/acscatal.0c04155.##
[18]. Guan, J., Saherwala, A., Vijayakumar, V., & Pjontek, D. (2024). CO2 Hydrogenation To methanol in a slurry reactor: catalytic performance of CuO-enhanced In2O3/ZrO2. Industrial & Engineering Chemistry Research, 63(4), 1814-1825. doi.org/10.1021/acs.iecr.3c03647.##
[19]. Liang, Y., Mao, D., Guo, X., Yu, J., Wu, G., & Ma, Z. (2021). Solvothermal preparation of CuO-ZnO-ZrO2 catalysts for methanol synthesis via CO2 hydrogenation. Journal of the Taiwan Institute of Chemical Engineers, 121, 81-91. doi.org/10.1016/j.jtice.2021.03.049.##
[20]. Spadaro, L., Santoro, M., Palella, A., & Arena, F. (2017). Hydrogen utilization in green fuel synthesis via CO2 conversion to methanol over new Cu-based catalysts. ChemEngineering, 1(2), 19. doi.org/10.3390/chemengineering1020019.##
[21]. Rajendran, K., Pandurangan, N., Vinod, C. P., Khan, T. S., Gupta, S., Haider, M. A., & Jagadeesan, D. (2021). CuO as a reactive and reusable reagent for the hydrogenation of nitroarenes. Applied Catalysis B: Environmental, 297, 120417. doi.org/10.1016/j.apcatb.2021.120417.##
[22]. Xia, Z., Li, Y., Wu, J., Huang, Y. C., Zhao, W., Lu, Y., Pan, Y., Yue, X., Wang, Y., Dong, C.L. & Zou, Y. (2022). Promoting the electrochemical hydrogenation of furfural by synergistic Cu0− Cu+ active sites. Science China Chemistry, 65(12), 2588-2595.##
[23]. Haghighi, M., Rahmani, F., Dehghani, R., Tehrani, A. M., & Miranzadeh, M. B. (2017). Photocatalytic reduction of Cr (VI) in aqueous solution over ZnO/HZSM-5 nanocomposite: optimization of ZnO loading and process conditions. Desalination and water treatment, 58, 168-180. doi.org/10.5004/dwt.2017.0145.##
[24]. Moradi, A., Khamforoush, M., Rahmani, F., & Ajamein, H. (2023). Synthesis of 0D/1D electrospun titania nanofibers incorporating CuO nanoparticles for tetracycline photodegradation and modeling and optimizationof the removal process. Materials Science and Engineering: B, 297, 116711. doi.org/10.1016/j.mseb.2023.116711.##
[25]. Albrecht, M., Rodemerck, U., Schneider, M., Bröring, M., Baabe, D., & Kondratenko, E. V. (2017). Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over non-doped Fe2O3. Applied Catalysis B: Environmental, 204, 119-126. doi.org/10.1016/j.apcatb.2016.11.017.##
[26]. Cai, D., Wang, Q., Jia, Z., Ma, Y., Cui, Y., Muhammad, U., Wang, Y., Qian, W. & Wei, F. (2016). Equilibrium analysis of methylbenzene intermediates for a methanol-to-olefins process. Catalysis Science & Technology, 6(5), 1297-1301. doi.org/10.1039/C6CY00059B.##
[27]. Ferraz, C. P., Tavares, M., Bordini, L. F., Garcia, M. A. S., de Almeida, J. M. A. R., Sousa-Aguiar, E. F., & Romano, P. N. (2024). Investigating the role of promoters (Ga, Nb, La, and Mg) on In2O3-based catalysts: Advancing on CO2 hydrogenation to C5+ hydrocarbons. Fuel, 358, 130234. doi.org/10.1016/j.fuel.2023.130234.##
[28]. Sedighi, M., & Mohammadi, M. (2020). CO2 hydrogenation to light olefins over Cu-CeO2/SAPO-34 catalysts: Product distribution and optimization. Journal of CO2 Utilization, 35, 236-244. doi.org/10.1016/j.jcou.2019.10.002.##
[29]. Ghasemi, M., Mohammadi, M., & Sedighi, M. (2020). Sustainable production of light olefins from greenhouse gas CO2 over SAPO-34 supported modified cerium oxide. Microporous and Mesoporous Materials, 297, 110029. doi.org/10.1016/j.micromeso.2020.110029.##