[1]. Mehndiratta, M. M., & Garg, D. (2023). Beware! We are Skating on a thin Ice: air pollution is a killer. The Journal of the Association of Physicians of India, 71(7), 11-12. PMID: 37449683. ##
[2]. مالکی، ن. و مطهری ک. (2019). عملکرد جذب دی اکسید کربن در محلول پی زایلیلن دی آمین: اندازهگیری آزمایشگاهی و مدلسازی با استفاده از تئوری پاسخ سطح. پژوهش نفت. 29، 98-1، 145-135.
doi: 10.22078/pr.2018.3420.2566.##
[3]. Ritchie, H., Rosado, P., & Roser, M. (2023). CO2 and greenhouse gas emissions. Our world in data.##
[4]. D'Alessandro, D. M., & McDonald, T. (2010). Toward carbon dioxide capture using nanoporous materials. Pure and Applied Chemistry, 83(1), 57-66. doi.org/10.1351/PAC-CON-10-09-18/html.##
[5]. Ben-Mansour, R., Habib, M., Bamidele, O., Basha, M., Qasem, N., Peedikakkal, A., Laoui, T., & Ali, M. (2016). Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations–a review. Applied Energy, 161, 225-255. doi.org/10.1016/j.apenergy.2015.10.011.##
[6]. Aslannezhad, M., Sayyafzadeh, M., Iglauer, S., & Keshavarz, A. (2024). Identification of early opportunities for simultaneous H2 separation and CO2 storage using depleted coal seams. Separation and Purification Technology, 330, 125364. doi.org/10.1016/j.seppur.2023.125364.##
[7]. Aniruddha, R., Sreedhar, I., & Reddy, B. M. (2020). MOFs in carbon capture-past, present and future. Journal of CO2 Utilization, 42, 101297. doi.org/10.1016/j.jcou.2020.101297.##
[8]. عبادی عموقین، سناییپور ح.، مقدسی ع.، کارگری ع.، قنبری د. شیخی مهرآبادی ز. و قائمی، م. (2011). جداسازی دی اکسیدکربن/نیتروژن با استفاده از غشای آلیاژی ABS/PEG. پژوهش نفت. 20، 64، 16-12.##
[9]. Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., & Barrett, K. (2023). Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. The Australian National University. ##
[10]. Pistidda, C. (2021). Solid-state hydrogen storage for a decarbonized society. Hydrogen, 2(4), 428-443. ##
[11]. Levin, D. B., & Chahine, R. (2010). Challenges for renewable hydrogen production from biomass. International Journal of Hydrogen Energy, 35(10), 4962-4969. doi.org/10.1016/j.ijhydene.2009.08.067 ##
[12]. Rambhujun, N., Salman, M., Wang, T., Pratthana, C., Sapkota, P., Costalin, M., Lai, Q., & Aguey-Zinsou, K. (2020). Renewable hydrogen for the chemical industry. MRS Energy & Sustainability, 7. E33. ##
[13]. Yang, M., Ma, C., Xu, M., Wang, S., & Xu, L. (2019). Recent advances in CO2 adsorption from air: a review. Current Pollution Reports, 5, 272-293. doi.org/10.1007/s40726-019-00128-1.##
[14]. Matus, E., Sukhova, O., Kerzhentsev, M., Ismagilov, I., Yashnik, S., Ushakov, V., Larina, T., Gerasimov, E. Y., Stonkus, O., & Nikitin, A. (2024). Hydrogen Production from Methane with CO2 Utilization over Exsolution Derived Bimetallic NiCu/CeO2 Catalysts. Catalysis Letters, 154(5), 2197-2210. doi.org/10.1007/s10562-023-04454-4.##
[15]. Massarweh, O., Al-khuzaei, M., Al-Shafi, M., Bicer, Y., & Abushaikha, A. S. (2023). Blue hydrogen production from natural gas reservoirs: A review of application and feasibility. Journal of CO2 Utilization, 70, 102438. doi.org/10.1007/s10562-023-04454-4.##
[16]. Jung, J., Seo, Y., & Wood, C. D. (2024). Application of amine infused hydrogels (AIHs) for selective capture of CO2 from H2/CO2 and N2/CO2 gas mixture. Chemical Engineering Science, 288, 119799. doi.org/10.1016/j.ces.2024.119799
[17]. Carpenter, S. M., & Long III, H. A. (2017). Integration of carbon capture in IGCC systems. In Integrated Gasification Combined Cycle (IGCC) Technologies (pp. 445-463). Elsevier. ##
[18]. Sreedhar, I., Nahar, T., Venugopal, A., & Srinivas, B. (2017). Carbon capture by absorption–Path covered and ahead. Renewable and Sustainable Energy Reviews, 76, 1080-1107. doi.org/10.1016/j.rser.2017.03.109.##
[19]. Salvinder, K., Zabiri, H., Taqvi, S. A., Ramasamy, M., Isa, F., Rozali, N., Suleman, H., Maulud, A., & Shariff, A. (2019). An overview on control strategies for CO2 capture using absorption/stripping system. Chemical Engineering Research and Design, 147, 319-337. doi.org/10.1016/j.cherd.2019.04.034.##
[20]. Raganati, F., Miccio, F., & Ammendola, P. (2021). Adsorption of carbon dioxide for post-combustion capture: a review. Energy & Fuels, 35(16), 12845-12868. doi.org/10.1021/acs.energyfuels.1c01618.##
[21]. Madejski, P., Chmiel, K., Subramanian, N., & Kuś, T. (2022). Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies, 15(3), 887. doi.org/10.1007/s10562-023-04454-4.##
[22]. Panda, P. K., Sahoo, B., & Ramakrishna, S. (2023). Hydrogen Production, Purification, Storage, Transportation, and Their Applications: A Review. Energy Technology, 11(7), 2201434. doi.org/10.1002/ente.202201434 ##
[23]. Seong, G., Yoko, A., Tomai, T., Naka, T., Wang, H., Frenkel, A. I., & Adschiri, T. (2024). Effect of exposed Facets And Oxidation State of CeO2 Nanoparticles on CO2 Adsorption And Desorption. ACS Sustainable Chemistry & Engineering, 12(19), 7532-7540. doi.org/10.1021/acssuschemeng.4c01322 ##
[24]. Zhu, X., Tian, C., Veith, G. M., Abney, C. W., Dehaudt, J., & Dai, S. (2016). In situ doping strategy for the preparation of conjugated triazine frameworks displaying efficient CO2 capture performance. Journal of the American Chemical Society, 138(36), 11497-11500. doi.org/10.1021/jacs.6b07644 ##
[25]. Xiao, J., Chen, J., Liu, J., Ihara, H., & Qiu, H. (2023). Synthesis strategies of covalent organic frameworks: An overview from nonconventional heating methods and reaction media. Green Energy & Environment, 8(6), 1596-1618. doi.org/10.1016/j.gee.2022.05.003 ##
[26]. Wang, T.-X., Liang, H.-P., Anito, D. A., Ding, X., & Han, B.-H. (2020). Emerging applications of porous organic polymers in visible-light photocatalysis. Journal of Materials Chemistry A, 8(15), 7003-7034. doi.org/10.1039/D0TA00364F##
[27]. Uribe-Romo, F. J., Hunt, J. R., Furukawa, H., Klock, C., O’Keeffe, M., & Yaghi, O. M. (2009). A crystalline imine-linked 3-D porous covalent organic framework. Journal of the American Chemical Society, 131(13), 4570-4571. doi.org/10.1021/ja8096256 ##
[28]. Osadchii, D. Y., Olivos-Suarez, A. I., Bavykina, A. V., & Gascon, J. (2017). Revisiting nitrogen species in covalent triazine frameworks. Langmuir, 33(50), 14278-14285. doi.org/10.1021/acs.langmuir.7b02929 ##
[29]. Lohse, M. S., & Bein, T. (2018). Covalent organic frameworks: structures, synthesis, and applications. Advanced Functional Materials, 28(33), 1705553. doi.org/10.1002/adfm.201705553 ##
[30]. Kuhn, P., Antonietti, M., & Thomas, A. (2008). Porous, covalent triazine‐based frameworks prepared by ionothermal synthesis. Angewandte Chemie International Edition, 47(18), 3450-3453. ##
[31]. Huang, J., Liu, X., Zhang, W., Liu, Z., Zhong, H., Shao, B., Liang, Q., Liu, Y., & He, Q. (2021). Functionalization of covalent organic frameworks by metal modification: Construction, properties and applications. Chemical Engineering Journal, 404, 127136. doi.org/10.1016/j.cej.2020.127136 ##
[32]. Guan, Q., Wang, G.-B., Zhou, L.-L., Li, W.-Y., & Dong, Y.-B. (2020). Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. Nanoscale Advances, 2(9), 3656-3733. doi.org/10.1039/D0NA00537A ##
[33]. Geng, K., He, T., Liu, R., Dalapati, S., Tan, K. T., Li, Z., Tao, S., Gong, Y., Jiang, Q., & Jiang, D. (2020). Covalent organic frameworks: design, synthesis, and functions. Chemical Reviews, 120(16), 8814-8933. doi.org/10.1021/acs.chemrev.9b00550 ##
[34]. Diaz de Grenu, B., Torres, J., García‐González, J., Muñoz‐Pina, S., de Los Reyes, R., Costero, A. M., Amorós, P., & Ros‐Lis, J. V. (2021). Microwave‐assisted synthesis of covalent organic frameworks: A review. ChemSusChem, 14(1), 208-233. doi.org/10.1002/cssc.202001865 ##
[35]. Dalapati, S., Jin, S., Gao, J., Xu, Y., Nagai, A., & Jiang, D. (2013). An azine-linked covalent organic framework. Journal of the American Chemical Society, 135(46), 17310-17313. doi.org/10.1021/ja4103293 ##
[36]. Abuzeid, H. R., EL-Mahdy, A. F., & Kuo, S.-W. (2021). Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant, 6, 100054. doi.org/10.1016/j.giant.2021.100054
[37]. Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1-2), 1-184. doi.org/10.1016/S0079-6425(99)00010-9 ##
[38]. Troyano, J., Camur, C., Garzon-Tovar, L., Carné-Sánchez, A., Imaz, I., & Maspoch, D. (2020). Spray-drying synthesis of MOFs, COFs, and related composites. Accounts of Chemical Research, 53(6), 1206-1217. doi.org/10.1021/acs.accounts.0c00133 ##
[39]. Ben, T., Pei, C., Zhang, D., Xu, J., Deng, F., Jing, X., & Qiu, S. (2011). Gas storage in porous aromatic frameworks (PAFs). Energy & Environmental Science, 4(10), 3991-3999. ##
[40]. Karimi, M., Rodrigues, A. E., & Silva, J. A. (2021). Designing a simple volumetric apparatus for measuring gas adsorption equilibria and kinetics of sorption. Application and validation for CO2, CH4 and N2 adsorption in binder-free beads of 4A zeolite. Chemical Engineering Journal, 425, 130538. doi.org/10.1016/j.cej.2021.130538 ##
[41]. Khalili, S., Khoshandam, B., & Jahanshahi, M. (2015). Optimization of production conditions for synthesis of chemically activated carbon produced from pine cone using response surface methodology for CO2 adsorption. RSC Advances, 5(114), 94115-94129. ##
[42]. Ben-Mansour, R., & Qasem, N. A. (2018). An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74. Energy Conversion and Management, 156, 10-24. doi.org/10.1016/j.enconman.2017.11.010.##
[43]. Siqueira, R. M., Freitas, G. R., Peixoto, H. R., Do Nascimento, J. F., Musse, A. P. S., Torres, A. E., Azevedo, D. C., & Bastos-Neto, M. (2017). Carbon dioxide capture by pressure swing adsorption. Energy Procedia, 114, 2182-2192. doi.org/10.1016/j.egypro.2017.03.1355.##
[44]. Boonchuay, A., & Worathanakul, P. (2022). The diffusion behavior of CO2 adsorption from a CO2/N2 gas mixture on zeolite 5A in a fixed-bed column. Atmosphere, 13(4), 513. ##
[45]. Cote, A. P., El-Kaderi, H. M., Furukawa, H., Hunt, J. R., & Yaghi, O. M. (2007). Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. Journal of the American Chemical Society, 129(43), 12914-12915. doi.org/10.1021/ja0751781.##
[46]. Cote, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J., & Yaghi, O. M. (2005). Porous, crystalline, covalent organic frameworks. science, 310(5751), 1166-1170. doi.org/10.1126/science.1120411 ##
[47]. Furukawa, H., & Yaghi, O. M. (2009). Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. Journal of the American Chemical Society, 131(25), 8875-8883. doi.org/10.1021/ja9015765.##
[48]. Li, Z., Feng, X., Zou, Y., Zhang, Y., Xia, H., Liu, X., & Mu, Y. (2014). A 2D azine-linked covalent organic framework for gas storage applications. Chemical Communications, 50(89), 13825-13828. ##
[49]. Wang, G., Tahir, N., Onyshchenko, I., De Geyter, N., Morent, R., Leus, K., & Van Der Voort, P. (2019). Novel hexaazatrinaphthalene-based covalent triazine frameworks as high-performance platforms for efficient carbon capture and storage. Microporous and Mesoporous Materials, 290, 109650. doi.org/10.1016/j.micromeso.2019.109650.##
[50]. Puthiaraj, P., Kim, H. S., Yu, K., & Ahn, W.-S. (2020). Triphenylamine-based covalent imine framework for CO2 capture and catalytic conversion into cyclic carbonates. Microporous and Mesoporous Materials, 297, 110011. doi.org/10.1016/j.micromeso.2020.110011. ##
[51]. Abid, A., Razzaque, S., Hussain, I., & Tan, B. (2021). Eco-friendly phosphorus and nitrogen-rich inorganic–organic hybrid hypercross-linked porous polymers via a low-cost strategy. Macromolecules, 54(12), 5848-5855. ##
[52]. Sarma, P., Sarmah, K. K., Kakoti, D., Mahanta, S. P., Adassooriya, N. M., Nandi, G., Das, P. J., Bučar, D.-K., & Thakuria, R. (2021). A readily accessible porous organic polymer facilitates high-yielding Knoevenagel condensation at room temperature both in water and under solvent-free mechanochemical conditions. Catalysis Communications, 154, 106304. doi.org/10.1016/j.catcom.2021.106304.##
[53]. Cui, J., Wang, G., Wang, C., Ke, P., Tian, Q., & Tian, Y. (2021). Characterization, adsorption isotherm, and kinetic of mesoporous silica microspheres for dyeing wastewater. Desalination and Water Treatment, 217, 358-366. doi.org/10.5004/dwt.2021.26922.##
[54]. Zhu, H., & Xu, S.-a. (2018). Preparation and fire behavior of rigid polyurethane foams synthesized from modified urea–melamine–formaldehyde resins. RSC Advances, 8(32), 17879-17887. doi.org/10.1039/C8RA01846D.##
[55]. Umar, Y., & Abdalla, S. (2015). Experimental FTIR and Theoretical Investigation of the Molecular Sturcture and Vibrational Spectra of Terephthaloyl Chloride by Density Functional Theory. IOSR Journal of Applied Chemistry (IOSR-JAC), 8(9), 26-34. ##
[56]. Dai, H., Gao, X., Liu, E., Yang, Y., Hou, W., Kang, L., Fan, J., & Hu, X. (2013). Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition. Diamond and Related Materials, 38, 109-117. doi.org/10.1016/j.diamond.2013.06.012.##