ساخت و ارزیابی عملکرد پلیمر آلی متخلخل آمورف در فرآیند جذب دی‌اکسید‌کربن به منظور تولید هیدروژن آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه صنایع شیمی آلی و داروئی، پژوهشکده فناوریهای شیمیایی، سازمان پژوهشهای علمی و صنعتی ایران، تهران، ایران

2 گروه فناوریهای شیمیایی سبز، پژوهشکده فناوریهای شیمیایی، سازمان پژوهشهای علمی و صنعتی ایران، تهران، ایران

چکیده

مصرف بی‌‌رویه سوخت‌های فسیلی نگرانی‌‌های جدی در مورد افزایش تولید گازهای گلخانه‌‌ای و در نتیجه آلودگی هوا و همچنین تغییرات آب‌وهوایی ایجاد کرده است. تولید هیدروژن آبی یک روش جدید برای جلوگیری از تولید دی‌اکسید‌کربن به شمار می‌آید. پلیمرهای آلی متخلخل با توجه به پایداری حرارتی و شیمیایی آنها جاذب‌های مناسبی برای جذب گاز دی‌اکسید‌کربن هستند و توجه زیادی را به خود جلب کرده‌اند. از این رو در این مطالعه پلیمر آلی متخلخل آمیدی (AM-POP) از ملامین، ترفتالویل کلراید تحت شرایط رفلاکس به مدت h ۶ سنتز شد و به وسیله روش‌های SEM ،FTIR و جذب-واجذب گاز نیتروژن شناسایی شد. متوسط اندازه حفرات nm 15 و مساحت سطح جاذب برابر m2/g 339 بدست آمد. اندازه ذرات گرفته شده در محدوده nm 14 تا nm 18هستند. میزان ظرفیت جذب دی‌اکسید‌کربن روی نانوساختار سنتز شده با روش حجم‌سنجی در دمای K ۲۹۸ و فشار bar ۱۶ اندازه‌گیری شد. نتایج بدست آمده نشان می‌دهد که ظرفیت جذب این ساختار برابر mmol 3/2 به‌ازای هر گرم جاذب است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fabrication and Performance Evaluation of Amorphous Porous Organic Polymers for Carbon Dioxide Adsorption Process to Produce Blue Hydrogen

نویسندگان [English]

  • Yasamin Bide 1
  • Nahid Khandan 2
  • Seyed Mahdi Mejmarian Esfahani 2
1 Department of chemical technologies,, Iranian research organization for science and technology (IROST), Tehran, Iran
2 Department of chemical technologies, Iranian research organization for science and technology (IROST), Tehran, Iran
چکیده [English]

Excessive consumption of fossil fuels has caused serious concerns about the increase in greenhouse gas production and as a result air pollution as well as climate change. As a potential solution, blue hydrogen production has emerged as a promising approach to reduce carbon dioxide emissions. Porous organic polymers have garnered a lot of attention as potential adsorbents for carbon dioxide gas adsorption because of their thermal and chemical stability. In this study, an amide-functionalized porous organic polymer (AM-POP) was synthesized from melamine, terephthaloyl chloride in dimethyl sulfoxide solvent under reflux conditions for 6 hours. The synthesized material was characterized using SEM, FTIR and BET methods. The average size of the holes is 15 nm and the surface area of the adsorber is 339 m2/g. The size of the particles taken is in the range of 14 to 18 nm, the carbon dioxide adsorption capacity on the synthesized nanostructure was determined at 16 bar of pressure and 298 K of temperature. Ultimately, the results obtained indicate that this structure has an adsorption capacity of 2.3 mmol/g of adsorbent.

کلیدواژه‌ها [English]

  • Porous Organic Polymer
  • Melamine
  • Surface Adsorption
  • Carbon Dioxide
  • Blue Hydrogen
[1]. Mehndiratta, M. M., & Garg, D. (2023). Beware! We are Skating on a thin Ice: air pollution is a killer. The Journal of the Association of Physicians of India, 71(7), 11-12. PMID: 37449683. ##
[2]. مالکی، ن. و مطهری ک. (2019). عملکرد جذب دی اکسید کربن در محلول پی زایلیلن دی آمین: اندازه‌گیری آزمایشگاهی و مدل‌سازی با استفاده از تئوری پاسخ سطح. پژوهش نفت. 29، 98-1، 145-135.
doi: 10.22078/pr.2018.3420.2566.##
[3]. Ritchie, H., Rosado, P., & Roser, M. (2023). CO2 and greenhouse gas emissions. Our world in data.##
[4]. D'Alessandro, D. M., & McDonald, T. (2010). Toward carbon dioxide capture using nanoporous materials. Pure and Applied Chemistry, 83(1), 57-66. doi.org/10.1351/PAC-CON-10-09-18/html.##
[5]. Ben-Mansour, R., Habib, M., Bamidele, O., Basha, M., Qasem, N., Peedikakkal, A., Laoui, T., & Ali, M. (2016). Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations–a review. Applied Energy, 161, 225-255. doi.org/10.1016/j.apenergy.2015.10.011.##
[6]. Aslannezhad, M., Sayyafzadeh, M., Iglauer, S., & Keshavarz, A. (2024). Identification of early opportunities for simultaneous H2 separation and CO2 storage using depleted coal seams. Separation and Purification Technology, 330, 125364. doi.org/10.1016/j.seppur.2023.125364.##
[7]. Aniruddha, R., Sreedhar, I., & Reddy, B. M. (2020). MOFs in carbon capture-past, present and future. Journal of CO2 Utilization, 42, 101297. doi.org/10.1016/j.jcou.2020.101297.##
[8]. عبادی عموقین، سنایی‌پور ح.، مقدسی ع.، کارگری ع.، قنبری د. شیخی مهرآبادی ز. و قائمی، م. (2011). جداسازی دی اکسیدکربن/نیتروژن با استفاده از غشای آلیاژی ABS/PEG. پژوهش نفت. 20، 64، 16-12.##
[9]. Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., & Barrett, K. (2023). Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. The Australian National University. ##
[10]. Pistidda, C. (2021). Solid-state hydrogen storage for a decarbonized society. Hydrogen, 2(4), 428-443. ##
[11]. Levin, D. B., & Chahine, R. (2010). Challenges for renewable hydrogen production from biomass. International Journal of Hydrogen Energy, 35(10), 4962-4969. doi.org/10.1016/j.ijhydene.2009.08.067 ##
[12]. Rambhujun, N., Salman, M., Wang, T., Pratthana, C., Sapkota, P., Costalin, M., Lai, Q., & Aguey-Zinsou, K. (2020). Renewable hydrogen for the chemical industry. MRS Energy & Sustainability, 7. E33. ##
[13]. Yang, M., Ma, C., Xu, M., Wang, S., & Xu, L. (2019). Recent advances in CO2 adsorption from air: a review. Current Pollution Reports, 5, 272-293. doi.org/10.1007/s40726-019-00128-1.##
[14]. Matus, E., Sukhova, O., Kerzhentsev, M., Ismagilov, I., Yashnik, S., Ushakov, V., Larina, T., Gerasimov, E. Y., Stonkus, O., & Nikitin, A. (2024). Hydrogen Production from Methane with CO2 Utilization over Exsolution Derived Bimetallic NiCu/CeO2 Catalysts. Catalysis Letters, 154(5), 2197-2210. doi.org/10.1007/s10562-023-04454-4.##
[15]. Massarweh, O., Al-khuzaei, M., Al-Shafi, M., Bicer, Y., & Abushaikha, A. S. (2023). Blue hydrogen production from natural gas reservoirs: A review of application and feasibility. Journal of CO2 Utilization, 70, 102438. doi.org/10.1007/s10562-023-04454-4.##
[16]. Jung, J., Seo, Y., & Wood, C. D. (2024). Application of amine infused hydrogels (AIHs) for selective capture of CO2 from H2/CO2 and N2/CO2 gas mixture. Chemical Engineering Science, 288, 119799. doi.org/10.1016/j.ces.2024.119799 
[17]. Carpenter, S. M., & Long III, H. A. (2017). Integration of carbon capture in IGCC systems. In Integrated Gasification Combined Cycle (IGCC) Technologies (pp. 445-463). Elsevier. ##
[18]. Sreedhar, I., Nahar, T., Venugopal, A., & Srinivas, B. (2017). Carbon capture by absorption–Path covered and ahead. Renewable and Sustainable Energy Reviews, 76, 1080-1107. doi.org/10.1016/j.rser.2017.03.109.##
[19]. Salvinder, K., Zabiri, H., Taqvi, S. A., Ramasamy, M., Isa, F., Rozali, N., Suleman, H., Maulud, A., & Shariff, A. (2019). An overview on control strategies for CO2 capture using absorption/stripping system. Chemical Engineering Research and Design, 147, 319-337. doi.org/10.1016/j.cherd.2019.04.034.##
[20]. Raganati, F., Miccio, F., & Ammendola, P. (2021). Adsorption of carbon dioxide for post-combustion capture: a review. Energy & Fuels, 35(16), 12845-12868. doi.org/10.1021/acs.energyfuels.1c01618.##
[21]. Madejski, P., Chmiel, K., Subramanian, N., & Kuś, T. (2022). Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies, 15(3), 887. doi.org/10.1007/s10562-023-04454-4.##
[22]. Panda, P. K., Sahoo, B., & Ramakrishna, S. (2023). Hydrogen Production, Purification, Storage, Transportation, and Their Applications: A Review. Energy Technology, 11(7), 2201434. doi.org/10.1002/ente.202201434 ##
[23]. Seong, G., Yoko, A., Tomai, T., Naka, T., Wang, H., Frenkel, A. I., & Adschiri, T. (2024). Effect of exposed Facets And Oxidation State of CeO2 Nanoparticles on CO2 Adsorption And Desorption. ACS Sustainable Chemistry & Engineering, 12(19), 7532-7540. doi.org/10.1021/acssuschemeng.4c01322 ##
[24]. Zhu, X., Tian, C., Veith, G. M., Abney, C. W., Dehaudt, J., & Dai, S. (2016). In situ doping strategy for the preparation of conjugated triazine frameworks displaying efficient CO2 capture performance. Journal of the American Chemical Society, 138(36), 11497-11500. doi.org/10.1021/jacs.6b07644 ##
[25]. Xiao, J., Chen, J., Liu, J., Ihara, H., & Qiu, H. (2023). Synthesis strategies of covalent organic frameworks: An overview from nonconventional heating methods and reaction media. Green Energy & Environment, 8(6), 1596-1618. doi.org/10.1016/j.gee.2022.05.003 ##
[26]. Wang, T.-X., Liang, H.-P., Anito, D. A., Ding, X., & Han, B.-H. (2020). Emerging applications of porous organic polymers in visible-light photocatalysis. Journal of Materials Chemistry A, 8(15), 7003-7034. doi.org/10.1039/D0TA00364F## 
[27]. Uribe-Romo, F. J., Hunt, J. R., Furukawa, H., Klock, C., O’Keeffe, M., & Yaghi, O. M. (2009). A crystalline imine-linked 3-D porous covalent organic framework. Journal of the American Chemical Society, 131(13), 4570-4571. doi.org/10.1021/ja8096256 ##
[28]. Osadchii, D. Y., Olivos-Suarez, A. I., Bavykina, A. V., & Gascon, J. (2017). Revisiting nitrogen species in covalent triazine frameworks. Langmuir, 33(50), 14278-14285. doi.org/10.1021/acs.langmuir.7b02929 ##
[29]. Lohse, M. S., & Bein, T. (2018). Covalent organic frameworks: structures, synthesis, and applications. Advanced Functional Materials, 28(33), 1705553. doi.org/10.1002/adfm.201705553 ##
[30]. Kuhn, P., Antonietti, M., & Thomas, A. (2008). Porous, covalent triazine‐based frameworks prepared by ionothermal synthesis. Angewandte Chemie International Edition, 47(18), 3450-3453. ##
[31]. Huang, J., Liu, X., Zhang, W., Liu, Z., Zhong, H., Shao, B., Liang, Q., Liu, Y., & He, Q. (2021). Functionalization of covalent organic frameworks by metal modification: Construction, properties and applications. Chemical Engineering Journal, 404, 127136. doi.org/10.1016/j.cej.2020.127136 ##
[32]. Guan, Q., Wang, G.-B., Zhou, L.-L., Li, W.-Y., & Dong, Y.-B. (2020). Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. Nanoscale Advances, 2(9), 3656-3733. doi.org/10.1039/D0NA00537A ##
[33]. Geng, K., He, T., Liu, R., Dalapati, S., Tan, K. T., Li, Z., Tao, S., Gong, Y., Jiang, Q., & Jiang, D. (2020). Covalent organic frameworks: design, synthesis, and functions. Chemical Reviews, 120(16), 8814-8933. doi.org/10.1021/acs.chemrev.9b00550 ##
[34]. Diaz de Grenu, B., Torres, J., García‐González, J., Muñoz‐Pina, S., de Los Reyes, R., Costero, A. M., Amorós, P., & Ros‐Lis, J. V. (2021). Microwave‐assisted synthesis of covalent organic frameworks: A review. ChemSusChem, 14(1), 208-233. doi.org/10.1002/cssc.202001865 ##
[35]. Dalapati, S., Jin, S., Gao, J., Xu, Y., Nagai, A., & Jiang, D. (2013). An azine-linked covalent organic framework. Journal of the American Chemical Society, 135(46), 17310-17313. doi.org/10.1021/ja4103293 ##
[36]. Abuzeid, H. R., EL-Mahdy, A. F., & Kuo, S.-W. (2021). Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant, 6, 100054. doi.org/10.1016/j.giant.2021.100054 
[37]. Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1-2), 1-184. doi.org/10.1016/S0079-6425(99)00010-9 ##
[38]. Troyano, J., Camur, C., Garzon-Tovar, L., Carné-Sánchez, A., Imaz, I., & Maspoch, D. (2020). Spray-drying synthesis of MOFs, COFs, and related composites. Accounts of Chemical Research, 53(6), 1206-1217. doi.org/10.1021/acs.accounts.0c00133 ##
[39]. Ben, T., Pei, C., Zhang, D., Xu, J., Deng, F., Jing, X., & Qiu, S. (2011). Gas storage in porous aromatic frameworks (PAFs). Energy & Environmental Science, 4(10), 3991-3999. ##
[40]. Karimi, M., Rodrigues, A. E., & Silva, J. A. (2021). Designing a simple volumetric apparatus for measuring gas adsorption equilibria and kinetics of sorption. Application and validation for CO2, CH4 and N2 adsorption in binder-free beads of 4A zeolite. Chemical Engineering Journal, 425, 130538. doi.org/10.1016/j.cej.2021.130538 ##
[41]. Khalili, S., Khoshandam, B., & Jahanshahi, M. (2015). Optimization of production conditions for synthesis of chemically activated carbon produced from pine cone using response surface methodology for CO2 adsorption. RSC Advances, 5(114), 94115-94129. ##
[42]. Ben-Mansour, R., & Qasem, N. A. (2018). An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74. Energy Conversion and Management, 156, 10-24. doi.org/10.1016/j.enconman.2017.11.010.##
[43]. Siqueira, R. M., Freitas, G. R., Peixoto, H. R., Do Nascimento, J. F., Musse, A. P. S., Torres, A. E., Azevedo, D. C., & Bastos-Neto, M. (2017). Carbon dioxide capture by pressure swing adsorption. Energy Procedia, 114, 2182-2192. doi.org/10.1016/j.egypro.2017.03.1355.##
[44]. Boonchuay, A., & Worathanakul, P. (2022). The diffusion behavior of CO2 adsorption from a CO2/N2 gas mixture on zeolite 5A in a fixed-bed column. Atmosphere, 13(4), 513. ##
[45]. Cote, A. P., El-Kaderi, H. M., Furukawa, H., Hunt, J. R., & Yaghi, O. M. (2007). Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. Journal of the American Chemical Society, 129(43), 12914-12915. doi.org/10.1021/ja0751781.##
[46]. Cote, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J., & Yaghi, O. M. (2005). Porous, crystalline, covalent organic frameworks. science, 310(5751), 1166-1170. doi.org/10.1126/science.1120411 ##
[47]. Furukawa, H., & Yaghi, O. M. (2009). Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. Journal of the American Chemical Society, 131(25), 8875-8883. doi.org/10.1021/ja9015765.##
[48]. Li, Z., Feng, X., Zou, Y., Zhang, Y., Xia, H., Liu, X., & Mu, Y. (2014). A 2D azine-linked covalent organic framework for gas storage applications. Chemical Communications, 50(89), 13825-13828. ##
[49]. Wang, G., Tahir, N., Onyshchenko, I., De Geyter, N., Morent, R., Leus, K., & Van Der Voort, P. (2019). Novel hexaazatrinaphthalene-based covalent triazine frameworks as high-performance platforms for efficient carbon capture and storage. Microporous and Mesoporous Materials, 290, 109650. doi.org/10.1016/j.micromeso.2019.109650.##
[50]. Puthiaraj, P., Kim, H. S., Yu, K., & Ahn, W.-S. (2020). Triphenylamine-based covalent imine framework for CO2 capture and catalytic conversion into cyclic carbonates. Microporous and Mesoporous Materials, 297, 110011. doi.org/10.1016/j.micromeso.2020.110011. ##
[51]. Abid, A., Razzaque, S., Hussain, I., & Tan, B. (2021). Eco-friendly phosphorus and nitrogen-rich inorganic–organic hybrid hypercross-linked porous polymers via a low-cost strategy. Macromolecules, 54(12), 5848-5855. ##
[52]. Sarma, P., Sarmah, K. K., Kakoti, D., Mahanta, S. P., Adassooriya, N. M., Nandi, G., Das, P. J., Bučar, D.-K., & Thakuria, R. (2021). A readily accessible porous organic polymer facilitates high-yielding Knoevenagel condensation at room temperature both in water and under solvent-free mechanochemical conditions. Catalysis Communications, 154, 106304. doi.org/10.1016/j.catcom.2021.106304.##
[53]. Cui, J., Wang, G., Wang, C., Ke, P., Tian, Q., & Tian, Y. (2021). Characterization, adsorption isotherm, and kinetic of mesoporous silica microspheres for dyeing wastewater. Desalination and Water Treatment, 217, 358-366. doi.org/10.5004/dwt.2021.26922.##
[54]. Zhu, H., & Xu, S.-a. (2018). Preparation and fire behavior of rigid polyurethane foams synthesized from modified urea–melamine–formaldehyde resins. RSC Advances, 8(32), 17879-17887. doi.org/10.1039/C8RA01846D.##
[55]. Umar, Y., & Abdalla, S. (2015). Experimental FTIR and Theoretical Investigation of the Molecular Sturcture and Vibrational Spectra of Terephthaloyl Chloride by Density Functional Theory. IOSR Journal of Applied Chemistry (IOSR-JAC), 8(9), 26-34. ##
[56]. Dai, H., Gao, X., Liu, E., Yang, Y., Hou, W., Kang, L., Fan, J., & Hu, X. (2013). Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition. Diamond and Related Materials, 38, 109-117. doi.org/10.1016/j.diamond.2013.06.012.##