بهره‌برداری از دی اکسید کربن و هیدروژن تجدیدپذیر: مسیر تولید پایدار متانول

نوع مقاله : مقاله پژوهشی

نویسندگان

1 سازمان پژوهش‌های علمی و صنعتی ایران، تهران، ایران

2 دانشکده علوم پایه، آزمایشگاه هیدروژن و پیل سوختی، دانشگاه یاسوج، ایران

3 دانشگاه آزاد واحد علوم و تحقیقات، تهران، ایران

10.22078/pr.2025.5642.3501

چکیده

مصرف دی‌اکسید کربن حاصل از  کارخانجات تولید سیمان، و یا دی اکسید کربن متصاعد شده از فرآیندهای پتروشیمی باعث  بروز مشکلات زیست‌محیطی مانند تغییرات اقلیمی، اثر گلخانه‌ای و وقوع پدیده‌های شدید آب‌وهوایی شده است که خطرات جدی برای زندگی انسان به‌همراه دارند. استفاده از فن‌آوری‌های جذب، خالص‌سازی، ذخیره‌سازی و استفاده از کربن (CCSU) یکی از رویکردهای امیدوارکننده در این زمینه به‌شمار می‌رود. در این کار تحقیقاتی مناسب‌ترین منابع برای بهره‌برداری یکپارچه از گاز دی اکسید کربن متصاعد شده و هیدروژن تولید شده با استفاده از الکترولیز آب با برق تجدید‌پذیر مانند انرژی خورشیدی معرفی شده است. هیدروژناسیون گاز در اکسید کربن  یکی از پیشرفته‌ترین فن‌آوری‌ها برای مصرف دی اکسید کربن  محسوب می‌شود. ارزیابی پایداری این فرآیند، مستلزم تحلیل جامع منابع اولیه مواد، به‌ویژه CO2 و H2 می‌باشد. در این مقاله، یک چارچوب چند معیاره را برای شناسایی مناسب‌ترین منابع CO2 و H2 جهت فرآیندهای تبدیل ارائه شده است. منابع مختلف CO2، از نیروگاه‌ها تا تخمیر اتانول، و H2، از تولید اختصاصی تا هیدروژن به‌دست‌آمده به‌عنوان محصول جانبی، براساس معیارهای زیست‌محیطی، اقتصادی و فنی مورد ارزیابی قرار گرفت. سپس با استفاده از کاتالیزور متداول تولید متانول، Cu/Zn/Al2O3 متانول سبز تولید شد. از واکنش سه مول گاز هیدروژن و 1 مول گاز دی اکسید کربن در دمای 250° و فشار 70 بار متانول سبز تولید شد. نتایج نشان داد که CO2 حاصل از ریفرمینگ بخار متان، صنایع آهن و فولاد، تولید اتیلن اکسید و سایر منابع نقطه‌ای با غلظت بالا از نظر پایداری بهترین گزینه‌ها برای تامین دی اکسید کربن مورد نیاز این واکنش می باشند. همچنین، مشخص شد که H2 زمانی پایداری بیشتری دارد که به‌عنوان محصول جانبی فرآیندهای مختلف به‌دست آید یا از طریق الکترولیز آب با برق حاصل از انرژی خورشیدی و یا  انرژی بادی به‌طور کم هزینه تولید شود. راندمان تولید متانول در این واکنش 70% و تبدیل گاز هیدروژن و دی اکسید کربن به متانول 20% اندازه‌گیری شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Harnessing Renewable Carbon Dioxide and Hydrogen: A Path to Sustainable Methanol Production

نویسندگان [English]

  • Parisa Akbarian 1
  • Maryam Ranjbar 1
  • Mehdi Kheirmand 2
  • Niloofar Naseri Jahromi 1
  • Arya Abdollahi 3
1 Iranian Research Organization for Science and Technology (CIROST), Tehran, Iran
2 Department of Chemistry, College of Sciences, Yasouj University, Yasouj, Iran
3 Department of Chemical Technologies, Tehran, Iran
چکیده [English]

Carbon dioxide (CO2) emissions from cement factories and petrochemical industries have led to severe environmental consequences, including climate change, the greenhouse effect, and extreme weather events that threaten human life. One of the most effective solutions to mitigate these risks is carbon capture, utilization, and storage (CCUS) technologies. Moreover, this study evaluates the integration of CO2 emissions management with renewable hydrogen production through water electrolysis powered by solar energy. Among the various CO2 transformation methods, CO2 hydrogenation has emerged as an advanced pathway for methanol production. Assessing the sustainability of this process requires a comprehensive analysis of primary material sources, particularly CO2 and H2. To achieve this, a multi-criteria framework is used to identify the most suitable CO2 and H2 sources for conversion processes. Industrial CO2 sources—from power plants to ethanol fermentation—and hydrogen sources, whether from dedicated production or as by-products, are evaluated based on environmental, economic, and technical criteria. The study concludes that CO2 from steam methane reforming, iron and steel industries, ethylene oxide production, and other high-concentration industrial sources represent the best choices for sustainable methanol synthesis. Likewise or similarly, hydrogen is most sustainably obtained as a by-product of various industrial processes or produced through cost-effective electrolysis powered by solar or wind energy. Using a Cu/Zn/Al2O3 catalyst, the reaction of three moles of hydrogen with one mole of CO2 at 250 °C and 70 bar pressure resulted in the production of green methanol, with an efficiency rate of 70 % and a conversion rate of 20 %.

کلیدواژه‌ها [English]

  • Carbon Capturing
  • Carbon Dioxide Hydrogenation
  • Green Hydrogen
  • Green Methanol
  • Catalyst
[1]. Alper, E., & Orhan, O. Y. (2017). CO2 utilization: Developments in conversion processes. Petroleum, 3(1), 109-126. doi.org/10.1016/j.petlm.2016.11.003.##
[2]. Greig, C., & Uden, S. (2021). The value of CCUS in transitions to net-zero emissions. The Electricity Journal, 34(7), 107004. doi.org/10.1016/j.tej.2021.107004.##
[3]. Niu, J., Liu, H., Jin, Y., Fan, B., Qi, W., & Ran, J. (2022). Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: Insights from experimental work and theoretical analysis. International Journal of Hydrogen Energy, 47(15), 9183-9200. doi.org/10.1016/j.ijhydene.2022.01.021.##
[4]. Ye, R. P., Ding, J., Gong, W., Argyle, M. D., Zhong, Q., Wang, Y., Russell, C.K., Xu, Z., Russell, A.G., Li, Q. & Yao, Y. G. (2019). CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 10(1), 5698. doi.org/10.1038/s41467-019-13638-9.##
[5]. Saeidi, S., Najari, S., Fazlollahi, F., Nikoo, M. K., Sefidkon, F., Klemeš, J. J., & Baxter, L. L. (2017). Mechanisms and kinetics of CO2 hydrogenation to value-added products: A detailed review on current status and future trends. Renewable and Sustainable Energy Reviews, 80, 1292-1311. doi.org/10.1016/j.rser.2017.05.204.##
[6]. Wang, H., Liu, Y., Laaksonen, A., Krook-Riekkola, A., Yang, Z., Lu, X., & Ji, X. (2020). Carbon recycling–An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact. Renewable and Sustainable Energy Reviews, 131, 110010. doi.org/10.1016/j.rser.2020.110010.##
[7]. Saravanan, A., Vo, D. V. N., Jeevanantham, S., Bhuvaneswari, V., Narayanan, V. A., Yaashikaa, P. R., Swetha, S. & Reshma, B. (2021). A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chemical Engineering Science, 236, 116515. https://doi.org/10.1016/j.ces.2021.116515.##
[8]. Atsonios, K., Panopoulos, K. D., & Kakaras, E. (2016). Investigation of technical and economic aspects for methanol production through CO2 hydrogenation. International Journal of Hydrogen Energy, 41(4), 2202-2214. doi.org/10.1016/j.ijhydene.2015.12.074.##
[9]. Acar, C., & Dincer, I. (2019). Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production, 218, 835-849. doi.org/10.1016/j.jclepro.2019.02.046.##
[10]. Meunier, N., Chauvy, R., Mouhoubi, S., Thomas, D., & De Weireld, G. (2020). Alternative production of methanol from industrial CO2. Renewable energy, 146, 1192-1203. doi.org/10.1016/j.renene.2019.07.010.##
[11]. Moret, S., Dyson, P. J., & Laurenczy, G. (2014). Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nature Communications, 5(1), 4017. doi.org/10.1038/ncomms5017.##
[12]. Okoye-Chine, C. G., Otun, K., Shiba, N., Rashama, C., Ugwu, S. N., Onyeaka, H., & Okeke, C. T. (2022). Conversion of carbon dioxide [13]. Al-Rowaili, F. N., Zahid, U., Onaizi, S., Khaled, M., Jamal, A., & AL-Mutairi, E. M. (2021). A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. Journal of CO2 Utilization, 53, 101715. doi.org/10.1016/j.jcou.2021.101715.##
[14]. Xie, S., Wang, Y., Zhang, Q., Deng, W., & Wang, Y. (2014). MgO-and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. Acs Catalysis, 4(10), 3644-3653. doi.org/10.1021/cs500648p.##
[15]. Tsiotsias, A. I., Charisiou, N. D., AlKhoori, A., Gaber, S., Sebastian, V., Hinder, S. J., Baker, M.A., Polychronopoulou, K. & Goula, M. A. (2022). Towards maximizing conversion of ethane and carbon dioxide into synthesis gas using highly stable Ni-perovskite catalysts. Journal of CO2 utilization, 61, 102046. https://doi.org/10.1016/j.jcou.2022.102046.##
[16]. Fu, Z., Yang, Q., Liu, Z., Chen, F., Yao, F., Xie, T., Zhong, Y., Wang, D., Li, J., Li, X. & Zeng, G. (2019). Photocatalytic conversion of carbon dioxide: From products to design the catalysts. Journal of CO2 Utilization, 34, 63-73. doi.org/10.1016/j.jcou.2019.05.032.##
[17]. Qyyum, M. A., Dickson, R., Shah, S. F. A., Niaz, H., Khan, A., Liu, J. J., & Lee, M. (2021). Availability, versatility, and viability of feedstocks for hydrogen production: Product space perspective. Renewable and Sustainable Energy Reviews, 145, 110843. doi.org/10.1016/j.rser.2021.110843.##
[18]. Lopes, J. V. M., Bresciani, A. E., Carvalho, K. D. M., Kulay, L. A., & Alves, R. M. D. B. (2021). Multi-criteria decision approach to select carbon dioxide and hydrogen sources as potential raw materials for the production of chemicals. Renewable and Sustainable Energy Reviews, 151, 111542. doi.org/10.1016/j.rser.2021.111542.##
[19]. Lopes, J. V. M., Bresciani, A. E., Carvalho, K. D. M., Kulay, L. A., & Alves, R. M. D. B. (2021). Multi-criteria decision approach to select carbon dioxide and hydrogen sources as potential raw materials for the production of chemicals. Renewable and Sustainable Energy Reviews, 151, 111542. doi.org/10.1016/j.rser.2021.111542.##
[20]. Zare, A., Khanipour, M., Sarverstani, H. K., Kakavandi, I. A., Shokroo, E. J., Farniaei, M., & Baghbani, M. (2019). Hydrogen and carbon dioxide recovery from the petrochemical flare gas to methanol production using adsorption and absorption combined high-efficient method. Applied Petrochemical Research, 9, 127-145. doi.org/10.1007/s13203-019-0232-2.##
[21]. Zakkour, P., & Cook, G. (2010). CCS Roadmap for Industry: High-purity CO2 sources. Carbon Counts Company Ltd: UK. ##
[22]. Li, M. M. J., & Tsang, S. C. E. (2018). Bimetallic catalysts for green methanol production via CO2 and renewable hydrogen: a mini-review and prospects. Catalysis Science & Technology, 8(14), 3450-3464. doi.org/10.1039/C8CY00304A.##
[23. Kalamaras, C. M., & Efstathiou, A. M. (2013). Hydrogen production technologies: current state and future developments. In Conference papers in science, 2013, 1: (690627). Hindawi Publishing Corporation. doi.org/10.1155/2013/690627.##
[24]. Ranjbar M. Green hydrogen production from renewable methanol. 12th Fuel Cell Conference Iran; 2023.
[25]. Lu, C., Bai, H., Wu, B., Su, F., & Hwang, J. F. (2008). Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy & Fuels, 22(5), 3050-3056. https://doi.org/10.1021/ef8000086.##
[26]. Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), 307-326. doi.org/10.1016/j.pecs.2009.11.002.##
[27]. Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244-260. https://doi.org/10.1016/j.cattod.2008.08.039.##
[28]. Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244-260. doi.org/10.1016/j.cattod.2008.08.039.##
[29]. Álvarez, A., Bansode, A., Urakawa, A., Bavykina, A. V., Wezendonk, T. A., Makkee, M., Gascon, J. & Kapteijn, F. (2017). Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chemical Reviews, 117(14): 9804-9838. doi.org/10.1021/acs.chemrev.6b00816.##
[30]. Midilli, A., Kucuk, H., Topal, M. E., Akbulut, U., & Dincer, I. (2021). A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. International Journal of Hydrogen Energy, 46(50), 25385-25412. doi.org/10.1016/j.ijhydene.2021.05.088.##
[31]. Barona, M., & Snurr, R. Q. (2020). Exploring the tunability of trimetallic MOF nodes for partial oxidation of methane to methanol. ACS Applied Materials & Interfaces, 12(25): 28217-28231. doi.org/10.1021/acsami.0c06241.##
[32]. Shaw, R., & Mukherjee, S. (2022). The development of carbon capture and storage (CCS) in India: A critical review. Carbon Capture Science & Technology, 2, 100036. https://doi.org/10.1016/j.ccst.2022.100036.##
[33]. Elgowainy, A., Frank, E. D., Vyawahare, P., Ng, C., Bafana, A., Burnham, A., Sun, P., Cai, H., Lee, U., Reddi, K. & Wang, M. (2022). Hydrogen life-cycle analysis in support of clean hydrogen production (No. ANL/ESIA-22/2). Argonne National Lab.(ANL), Argonne, IL (United States). ##
[34]. Lototskyy, M. V., Davids, M. W., Sekgobela, T. K., Arbuzov, A. A., Mozhzhukhin, S. A., Zhu, Y., Tang, R. & Tara sov, B. P. (2023). Tailoring of hydrogen generation by hydrolysis of magnesium hydride in organic acids solutions and development of generator of the pressurised H2 based on this process. Inorganics, 11(8), 319. doi.org/10.3390/inorganics11080319.##
[35]. Schuster, S., Dohmen, H. J., & Brillert, D. (2020). Challenges of compressing hydrogen for pipeline transportation with centrifugal compressors. Proceedings of Global Power and Propulsion Society, GPPS Chania20, Sept, 7-9. dx.doi.org/10.33737/gpps20-tc-45##
[36]. Müller, K., Brooks, K., & Autrey, T. (2018). Releasing hydrogen at high pressures from liquid carriers: aspects for the H2 delivery to fueling stations. Energy & Fuels, 32(9), 10008-10015. doi.org/10.1021/acs.energyfuels.8b01724.##
[37]. Huang, W., Jiang, X., He, G., Ruan, X., Chen, B., Nizamani, A. K., Li, X., Wu, X. & Xiao, W. (2020). A novel process of H2/CO2 membrane separation of shifted syngas coupled with gasoil hydrogenation. Processes, 8(5), 590. https://doi.org/10.3390/pr8050590.##
[38]. Reiter, G., & Lindorfer, J. (2015). Evaluating CO2 sources for power-to-gas applications–A case study for Austria. Journal of CO2 Utilization, 10, 40-49. doi.org/10.1016/j.jcou.2015.03.003.##
[39]. de Assis Filho, R. B., Danielski, L., de Carvalho, F. R., & Stragevitch, L. (2013). Recovery of carbon dioxide from sugarcane fermentation broth in the ethanol industry. Food and Bioproducts Processing, 91(3), 287-291. doi.org/10.1016/j.fbp.2012.09.009.##
[40]. Gielen, D. (2003). CO2 removal in the iron and steel industry. Energy Conversion and Management, 44(7), 1027-1037. doi.org/10.1016/S0196-8904(02)00111-5.##
[41]. Patil, T., Naji, A., Mondal, U., Pandey, I., Unnarkat, A., & Dharaskar, S. (2024). Sustainable methanol production from carbon dioxide: advances, challenges, and future prospects. Environmental Science and Pollution Research, 31(32), 44608-44648. doi.org/10.1007/s11356-024-34139-3.##
[42]. Khalilpour, R., Mumford, K., Zhai, H., Abbas, A., Stevens, G., & Rubin, E. S. (2015). Membrane-based carbon capture from flue gas: a review. Journal of Cleaner Production, 103, 286-300. doi.org/10.1016/j.jclepro.2014.10.050.##
[43]. Shirmohammadi, R., Aslani, A., Ghasempour, R., & Romeo, L. M. (2020). CO2 utilization via integration of an industrial post-combustion capture process with a urea plant: Process modelling and sensitivity analysis. Processes, 8(9), 1144. doi.org/10.3390/pr8091144.##
[44]. Olah, G. A., Goeppert, A., & Prakash, G. S. (2009). Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. The Journal of organic chemistry, 74(2), 487-498. doi.org/10.1021/jo801260f.##
[45]. Ganesh, I. (2011). Conversion of carbon dioxide to methanol using solar energy-a brief review. Materials Sciences and Applications, 2(10), 1407-1415. ##
[46]. Jantes-Jaramillo, D., Segovia-Hernández, J. G., & Hernandez, S. (2008). Reduction of energy consumption and greenhouse gas emissions in a plant for the separation of amines. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 31(10), 1462-1469. doi.org/10.1002/ceat.200800100.
[47]. Greer, T., Bedelbayev, A., Igreja, J. M., Gomes, J. F., & Lie, B. (2010). A simulation study on the abatement of CO2 emissions by de-absorption with monoethanolamine. Environmental Technology, 31(1), 107-115. doi.org/10.1080/09593330903373764.##
[48]. Hasan, S., Abbas, A. J., & Nasr, G. G. (2020). Improving the carbon capture efficiency for gas power plants through amine-based absorbents. Sustainability, 13(1), 72. doi.org/10.3390/su13010072.##
[49]. Aschenbrenner, O., & Styring, P. (2010). Comparative study of solvent properties for carbon dioxide absorption. Energy & Environmental Science, 3(8), 1106-1113. doi.org/10.1039/C002915G.##
[50]. Aresta, M. (2006). Carbon dioxide reduction and uses as a chemical feedstock. Activation of small molecules: Organometallic and Bioinorganic Perspectives, 1-41. 10.1002/3527609350.##
[51]. Selim, H., Gupta, A., & Al Shoaibi, A. (2012). Effect of carbon dioxide and nitrogen addition on hydrogen sulfide combustion. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (p. 1000). https://doi.org/10.2514/6.2012-1000.##
[52]. Lee, Y. H., & Kim, S. S. (2020). A Study on the Reaction Characteristics of Carbon Dioxide Methanation Catalyst for Full-Scale Process Application. Applied Chemistry for Engineering, 31(3), 323-327. doi.org/10.14478/ace.2020.1036.##
[53]. Magomnang, A. A. S. M., Varela, R. J., Asiñero, D. M. M., Gemina, M. L. M. P., Albina, D. O., Pacana, C. D. C., Pallo, V.A., Perez, J.H. & Cubio, G. M. (2024). Enhancing Biogas Purification Efficiency Through Microbial Intervention: A Comparative Analysis of Carbon Dioxide and Hydrogen Sulfide Removal in Anaerobic Digestion Systems. In 2024 International Conference on Sustainable Energy: Energy Transition and Net-Zero Climate Future (ICUE) (pp. 1-8). IEEE. 10.1109/ICUE63019.2024.10795527.##
[54]. Ko, S., Kim, S. M., & Jang, H. (2023). A Simulation Study on Evaluating the Influence of Impurities on Hydrogen Production in Geological Carbon Dioxide Storage. Sustainability, 15(18), 13620. doi.org/10.3390/su151813620##
[55]. Liu, G., Hao, M., Fan, S., & Li, C. (2023). A study on elemental sulfur equilibrium content in mixtures of methane, carbon dioxide, and hydrogen sulfide under conditions of natural gas pipeline transmission. Energies, 16(5), 2466. doi.org/10.3390/en16052466##
[56]. De Oliveira, L. H., Meneguin, J. G., Pereira, M. V., Do Nascimento, J. F., & Arroyo, P. A. (2019). Adsorption of hydrogen sulfide, carbon dioxide, methane, and their mixtures on activated carbon. Chemical Engineering Communications, 206(11), 1533-1553. doi.org/10.1080/00986445.2019.1601627##
[57]. Putra, A. A., Kalsum, L., & Hasan, A. (2023). CO2 and H2S Absorption in Tofu Liquid Waste Biogas using Packed Bed Scrubber with Variation of MEA Concentration and Flow Rate. International Journal of Research in Vocational Studies (IJRVOCAS), 3(2), 23-28. doi.org/10.53893/ijrvocas.v3i2.204##
[58]. Gini, L., Maccarini, S., Traverso, A., Pesatori, E., Milani, A., Bisio, V., Valente, R., Barberis, S. & Guedez, R. (2022, June). Part-Load Behaviour and Control Philosophy of a Recuperated Supercritical CO2 Cycle. In Turbo Expo: Power for Land, Sea, and Air (Vol. 86083, p. V009T28A019). American Society of Mechanical Engineers.doi.org/10.1115/GT2022-83021.##
[59]. Hosangadi, A., Weathers, T., Liu, J., Pelton, R., Wygant, K., & Wilkes, J. (2022). Numerical predictions of mean performance and dynamic behavior of a 10 MWe SCO2 compressor with test data validation. Journal of Engineering for Gas Turbines and Power, 144(12), 121019. doi.org/10.1115/1.4055532.##
[60]. Terracciano, O. A., Francesco, F. D., Brizzi, R., Annese, F., Doninelli, M., Putelli, L., & Gelfi, M. (2023, October). An advanced desalination system with an innovative CO2 power cycle integrated with renewable energy sources. In Abu Dhabi International Petroleum Exhibition and Conference (p. D011S017R002). SPE. doi.org/10.2118/215993-MS.##
[61]. Jiang, P., Wang, B., Tian, Y., Xu, X., & Zhao, L. (2021). Design of a supercritical CO2 compressor for use in a 1 MWe power cycle. ACS Omega, 6(49), 33769-33778. doi.org/10.1021/acsomega.1c05023.##
[62]. Kang, J., Vorobiev, A., Cameron, J. D., Morris, S. C., Turner, M. G., Sedlacko, K., Miller, J.D. & Held, T. J. (2025). Experimental study of the real gas effects of CO2 on the aerodynamic performance characteristics of a 1.5-stage axial compressor. Journal of Engineering for Gas Turbines and Power, 147(8). doi.org/10.1115/1.4067267##
[63]. Neveu, J. D., Cich, S. D., Moore, J. J., & Mortzheim, J. (2021, June). Operation and Control of a Supercritical CO2 Compressor. In Turbo Expo: Power for Land, Sea, and Air (Vol. 85048, p. V010T30A017). American Society of Mechanical Engineers. doi.org/10.1115/GT2021-59359.##
[64]. Daud, N. K., Martynov, S., Mahgerefteh, H., & Nasuha, N. (2019, November). Compression power requirements for Oxy-fuel CO2 streams in CCS. In IOP Conference Series: Materials Science and Engineering (Vol. 702, No. 1, p. 012059). IOP Publishing. 10.1088/1757-899X/702/1/012059.##
[65]. Jackson, S., & Brodal, E. (2018, July). A comparison of the energy consumption for CO2 compression process alternatives. In IOP Conference Series: Earth and Environmental Science (Vol. 167, p. 012031). IOP Publishing. 10.1088/1755-1315/167/1/012031.##
[66]. Herraiz, L., Palfi, E., Sánchez Fernández, E., & Lucquiaud, M. (2020). Rotary Adsorption: Selective recycling of CO2 in combined cycle gas turbine power plants. Frontiers in Energy Research, 8, 482708. doi.org/10.3389/fenrg.2020.482708.##
[67]. Song, P., Wu, D., Lu, Z., Zheng, S., Wei, M., Zhuge, W., & Zhang, Y. (2023). An Improved Geometric Theoretical Model and Throughflow Prediction Method for a CO2 Scroll Compressor of Automotive Air Conditioning System. International Journal of Energy Research, 2023(1), 9382690. doi.org/10.1155/2023/9382690.##
[68]. Wilson, S. M., & Tezel, F. H. (2020). Direct dry air capture of CO2 using VTSA with faujasite zeolites. Industrial & Engineering Chemistry Research, 59(18), 8783-8794. doi.org/10.1021/acs.iecr.9b04803.##
[69]. Jackson, S., & Brodal, E. (2018, July). A comparison of the energy consumption for CO2 compression process alternatives. In IOP Conference Series: Earth and Environmental Science (Vol. 167, p. 012031). IOP Publishing. 10.1088/1755-1315/167/1/012031.##
[70]. Yu, A., Su, W., Zhao, L., Lin, X., & Zhou, N. (2020). New knowledge on the performance of supercritical Brayton cycle with CO2-based mixtures. Energies, 13(7), 1741. doi.org/10.3390/en13071741.##
[71]. Peaslee, D., Buttner, W., Stewart, J., Palin, I., Gifford, J., Shah, M., ... & Hartmann, K. (2024, August). Hydrogen Detection Strategies to Support H2@ Scale--the NREL Sensor Laboratory. In Electrochemical Society Meeting Abstracts 245 (No. 51, pp. 2754-2754). The Electrochemical Society, Inc. 10.1149/MA2024-01512754mtgabs.##
[72]. Wambach, J., Baiker, A., & Wokaun, A. (1999). CO2 hydrogenation over metal/zirconia catalysts. Physical Chemistry Chemical Physics, 1(22), 5071-5080. doi.org/10.1039/A904923A.##
[73]. Olah GA, Goeppert A, Prakash GKS. Beyond oil and gas: The methanol economy. 2nd ed. Weinheim: Wiley-VCH; 2009.##
[74]. Mondal, U., & Yadav, G. D. (2021). Methanol economy and net zero emissions: critical analysis of catalytic processes, reactors and technologies. Green Chemistry, 23(21), 8361-8405. doi.org/10.1039/D1GC02078A.##
[75]. Martin, O., Martín, A. J., Mondelli, C., Mitchell, S., Segawa, T. F., Hauert, R., Drouilly, C., Curulla-Ferré, D. & Pérez-Ramírez, J. (2016). Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angewandte Chemie, 128(21), 6369-6373. https://doi.org/10.1002/ange.201600943.##
[76]. Wang, W., Wang, S., Ma, X., & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7), 3703-3727. doi.org/10.1039/C1CS15008A.##