[1]. Lemos B., Winter A., Blini E. K., Kim N. R., and Almeida R. V. (2024). Laboratory data for oil recovery by injecting low-salinity water into sandstone from Brazilian Campos Basin reservoir, Journal of Petroleum Science and Technology, 14(2), 25–37. doi: 10.22078/jpst.2025.5516.1949.##
[2]. Jadhunandan, P. P., & Morrow, N. R. (1991). Spontaneous imbibition of water by crude oil/brine/rock systems. In Situ;(United States), 15(4). ##
[3]. Morrow, N., & Buckley, J. (2011). Improved oil recovery by low-salinity waterflooding. Journal of petroleum Technology, 63(05), 106-112. doi.org/10.2118/129421-JPT. ##
[4]. Goual, L., & Firoozabadi, A. (2002). Measuring asphaltenes and resins, and dipole moment in petroleum fluids. AIChE Journal, 48(11), 2646-2663. doi.org/10.1002/aic.690481124. ##
[5]. شهابی، م.، قربانپور، ف.، آیتاللهی، ش.، و ماهانی، ح. (1403)، بررسی آزمایشگاهی ناپایداری آسفالتین در تزریق آب کمشور با استفاده از سامانه دیداری هله-شاو، پژوهش نفت، دوره 34، شماره ویژه ازدیاد برداشت نفت با استفاده از روشهای پایه آبی، 135، (16–3). doi: 10.22078/pr.2024.5254.3331. ##
[6]. Speight, J. G. (2004). Petroleum Asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum. Oil & gas science and technology, 59(5), 467-477. doi.org/10.2516/ogst: ##
[7]. Sheu, E. Y., Storm, D. A., & Maureen, M. (1991). Asphaltenes in polar solvents. Journal of non-crystalline solids, 131, 341-347. doi.org/10.1016/0022-3093(91)90326-2. ##
[8]. Vijapurapu, C. S., & Rao, D. N. (2003, February). Effect of brine dilution and surfactant concentration on spreading and wettability. In SPE International Conference on Oilfield Chemistry? (pp. SPE-80273). SPE. doi.org/10.2118/80273-MS. ##
[9]. Alotaibi, M. B., & Nasr-El-Din, H. A. (2009, April). Chemistry of injection water and its impact on oil recovery in carbonate and clastic formations. In SPE International Conference on Oilfield Chemistry? (pp. SPE-121565). SPE. doi.org/10.2118/121565-MS. ##
[10]. Yousef, A. A., Al-Saleh, S., Al-Kaabi, A., & Al-Jawfi, M. (2010, October). Laboratory investigation of novel oil recovery method for carbonate reservoirs. In SPE Canada Unconventional Resources Conference (pp. SPE-137634). SPE. doi.org/10.2118/137634-MS. ##
[11]. Lashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system. Energy & Fuels, 28(11), 6820-6829. doi.org/10.1021/ef5015692. ##
[12]. Moeini, F., Hemmati-Sarapardeh, A., Ghazanfari, M. H., Masihi, M., & Ayatollahi, S. (2014). Toward mechanistic understanding of heavy crude oil/brine interfacial tension: The roles of salinity, temperature and pressure. Fluid phase equilibria, 375, 191-200. doi.org/10.1016/j.fluid.2014.04.017. ##
[13]. Moradi, M., & Alvarado, V. (2016). Influence of aqueous-phase ionic strength and composition on the dynamics of water–crude oil interfacial film formation. Energy & Fuels, 30(11), 9170-9180. doi.org/10.1021/acs.energyfuels.6b01841. ##
[14]. Wang, X., Pensini, E., Liang, Y., Xu, Z., Chandra, M.S., Andersen, S.I., Abdallah, W. and Buiting, J.J., 2017. Fatty acid-asphaltene interactions at oil/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 513, pp.168-177. doi.org/10.1016/j.colsurfa.2016.10.029. ##
[15]. Ameri, A., Esmaeilzadeh, F., & Mowla, D. (2019). Effect of brine on asphaltene precipitation at high pressures in oil reservoirs. Petroleum Chemistry, 59(1), 57-65. ##
[16]. Jian, C., Poopari, M. R., Liu, Q., Zerpa, N., Zeng, H., & Tang, T. (2016). Mechanistic understanding of the effect of temperature and salinity on the water/toluene interfacial tension. Energy & Fuels, 30(12), 10228-10235. doi.org/10.1021/acs.energyfuels.6b01995. ##
[17]. Mahmoudvand, M., Javadi, A., & Pourafshary, P. (2019). Brine ions impacts on water-oil dynamic interfacial properties considering asphaltene and maltene constituents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, 123665. doi.org/10.1016/j.colsurfa.2019.123665. ##
[18]. Hamidian, R., Lashkarbolooki, M., & Amani, H. (2020). Evaluation of surface activity of asphaltene and resin fractions of crude oil in the presence of different electrolytes through dynamic interfacial tension measurement. Journal of Molecular Liquids, 300, 112297. doi.org/10.1016/j.molliq.2019.112297. ##
[19]. Alves, C. A., Yanes, J. F. R., Feitosa, F. X., & de Sant’Ana, H. B. (2022). Influence of asphaltenes and resins on water/model oil interfacial tension and emulsion behavior: Comparison of extracted fractions from crude oils with different asphaltene stability. Journal of Petroleum Science and Engineering, 208, 109268. doi.org/10.1016/j.petrol.2021.109268. ##
[20]. Ashoorian, S., Javadi, A., Hosseinpour, N., & Nassar, N. N. (2023). Interrelationship of bulk and oil-water interfacial properties of asphaltenes. Journal of Molecular Liquids, 381, 121761. doi.org/10.1016/j.molliq.2023.121761. ##
[21]. Zhang, S., Zhang, L., Lu, X., Shi, C., Tang, T., Wang, X., Huang, Q. and Zeng, H., 2018. Adsorption kinetics of asphaltenes at oil/water interface: Effects of concentration and temperature. Fuel, 212, 387-394, doi.org/10.1016/j.fuel.2017.10.051. ##
[22]. Khalili, H., Fahimpour, J., Sharifi, M., & Isfehani, Z. D. (2022). Investigation of influential parameters on oil/water interfacial tension during low-salinity water injection. Journal of Energy Resources Technology, 144(8), 083008. doi.org/10.1115/1.4053138. ##
[23]. Li, Y., Li, C., Zhao, Z., Cai, W., Xia, X., Yao, B., Sun, G. and Yang, F., 2022. Effects of asphaltene concentration and test temperature on the stability of water-in-model waxy crude oil emulsions. ACS omega, 7(9), 8023-8035, doi: 10.1021/acsomega.1c07174. ##
[25]. عبدی، ا. (1399)، بررسی پدیده سطحی سیستم آب هوشمند و نفت آسفالتینی، پایاننامه کارشناسی ارشد مهندسی نفت-مخازن هیدروکربوری، دانشکده مهندسی شیمی، نفت و گاز دانشگاه شیراز، پایاننامه. ##
[26]. محمدی، ا.، چهاردولی م. و سیمجو م. (1400). بررسی آزمایشگاهی تأثیر غلظت آسفالتین و یونهای دوظرفیتی محلول در آب بر کشش بینسطحی سیستم هپتول/آب شور، مجله پژوهش نفت، 31، 121، (140-128). doi.org/10.22078/PR.2021.4322.2958. ##
[27]. طاهریان ز. (1401). بررسی تجربی اثر آسفالتین و خصوصیات آن روی برهمکنشهای سیال/سیال در سیلابزنی آب کم شور، رساله دکتری مهندسی شیمی، دانشکده مهندسی شیمی دانشگاه تربیت مدرس. ##
[28]. Shojaei, S. A., Osfouri, S., Azin, R., & Dehghani, S. A. M. (2020). Kinetic modeling of asphaltene nano-aggregates formation using dynamic light scattering technique. Journal of Petroleum Science and Engineering, 192, 107293. doi.org/10.1016/j.petrol.2020.107293. ##
[29]. Lashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic–acidic crude oil reservoir during smart water injection. Journal of Chemical & Engineering Data, 59(11), 3624-3634. doi.org/10.1021/je500730e. ##
[30]. Chávez-Miyauchi, T. E., Firoozabadi, A., & Fuller, G. G. (2016). Nonmonotonic elasticity of the crude oil–brine interface in relation to improved oil recovery. Langmuir, 32(9), 2192-2198. doi.org/10.1021/acs.langmuir.5b04354. ##