[1]. Riboni F., Bettini L.G., Bahnemann D. W. and Selli E. (2013) WO3–TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides, Catalysis Today, 209: 28-34. doi.org/10.1016/j.cattod.2013.01.008.##
[2]. Jiang X.H., Zhang L.S., Liu H.Y., Wu D.S., Wu F.Y., Tian L., Liu L.L., Zou J.P., Luo S.L. and Chen B.B. (2020) Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution, Angewandte Chemie, 132: 23312-23316. doi.org/10.1002/ange.202011495. ##
[3]. Zhang B., He X., Ma X., Chen Q., Liu G., Zhou Y., Ma D., Cui C., Ma J. and Xin Y. (2020) In situ synthesis of ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst with enhanced photocatalytic activity, Separation and Purification Technology, 247: 116932. doi.org/10.1016/j.seppur.2020.116932. ##
[4]. Vilé G. (2021) Photocatalytic materials and light-driven continuous processes to remove emerging pharmaceutical pollutants from water and selectively close the carbon cycle, Catalysis Science & Technology, 11: 43-61. ##
[5]. Tahir M.B., Sagir M. and Shahzad K. (2019) Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3-TiO2 @g-C3N4 composite, Journal of Hazardous Materials, 363: 205-213. doi.org/10.1016/j.jhazmat.2018.09.055. ##
[6]. Belver C., Bedia J., Gómez-Avilés A., Peñas-Garzón M. and Rodriguez J. J. (2019) Semiconductor photocatalysis for water purification, Nanoscale Materials in Water Purification: Elsevier, 581-651. doi.org/10.1016/B978-0-12-813926-4.00028-8. ##
[7]. Jing H., Ou R., Yu H., Zhao Y., Lu Y., Huo M., Huo H. and Wang X. (2021) Engineering of g-C3N4 nanoparticles/WO3 hollow microspheres photocatalyst with Z-scheme heterostructure for boosting tetracycline hydrochloride degradation, Separation and Purification Technology, 255: 117646. doi.org/10.1016/j.seppur.2020.117646. ##
[8]. Mohd Razali N.A., Wan Salleh W.N., Aziz F., Jye L.W., Yusof N., and Ismail A.F. (2021) Review on tungsten trioxide as a photocatalysts for degradation of recalcitrant pollutants, Journal of Cleaner Production 309: 127438. doi.org/10.1016/j.jclepro.2021.127438. ##
[9]. Haounati R., El Guerdaoui A., Ouachtak H., El Haouti R., Bouddouch A., Hafid N., Bakiz B., Santos D.M.F., Labd Taha M., Jada A. and Ait Addi A. (2021) Design of direct Z-scheme superb magnetic nanocomposite photocatalyst Fe3O4/Ag3PO4@Sep for hazardous dye degradation, Separation and Purification Technology, 277: 119399. doi.org/10.1016/j.seppur.2021.119399. ##
[10]. Kovalevskiy N.S., Lyulyukin M.N., Selishchev D.S. and Kozlov D.V. (2018) Analysis of air photocatalytic purification using a total hazard index: Effect of the composite TiO2/zeolite photocatalys, Journal of Hazardous Materials, 358: 302-309. doi.org/10.1016/j.jhazmat.2018.06.035. ##
[11]. Zhang Y., Xiong M., Sun A., Shi Z., Zhu B., Macharia D.K., Li F., Chen Z., Liu J. and Zhang L. (2021) MIL-101(Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiber/TiO2-based weavable photocatalyst for removing pharmaceutical pollutants, Journal of Cleaner Production, 290: 125782. doi.org/10.1016/j.jclepro.2021.12578. ##
[12]. Iliev V., Tomova D. and Bilyarska L. (2018) Promoting the oxidative removal rate of 2,4-dichlorophenoxyacetic acid on gold-doped WO3/TiO2/reduced graphene oxide photocatalysts under UV light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 351: 69-77. doi.org/10.1016/j.jphotochem.2017.10.022. ##
[13]. Sun J-h., Wang Y-k., Sun R-x. and Dong S-y. (2009) Photodegradation of azo dye Congo Red from aqueous solution by the WO3–TiO2/activated carbon (AC) photocatalyst under the UV irradiation, Materials Chemistry and Physics, 115: 303-308. doi.org/10.1016/j.matchemphys.2008.12.008. ##
[14]. Rangkooy H.A., Ghaedi H. and Jahani F. (2019) Removal of xylene vapor pollutant from the air using new hybrid substrates of TiO2-WO3 nanoparticles immobilized on the ZSM-5 zeolite under UV radiation at ambient temperature: Experimental towards modeling, Journal of Environmental Chemical Engineering, 7: 103247. doi.org/10.1016/j.jece.2019.103247. ##
[15]. زندی اوین.، اکبری سنه روجیار. و رحمانی چیانه فرهاد. (1401) تأثیر زئولیت طبیعی کلینوپتیلولیت بر خواص و عملکرد فتوکاتالیستی نیمهرسانای BiOI در تخریب نوری پساب رنگی، مجله پژوهش نفت، 32، 65-48. doi: 10.22078/pr.2022.4669.3099##
[16]. Amini A., Rahmani F., Kkamforoush M. and Akbari Sene R (2023) Bentonite nanoparticles-incorporated ZnO nanofiber mats assembly by electro-centrifuge spinning for efficient photo-degradation of bentazon herbi cide: Tuning composition and process optimization, Journal of Cleaner Production, 414: 137652. doi.org/10.1016/j.jclepro.2023.137652. ##
[17]. Akbari Sene R., Moradi G., Sharifnia S. and Rahmani F. (2020) Hydrogen evolution via water splitting using TiO2 nanoparticles immobilized on aluminosilicate mineral: synergistic effect of porous mineral and TiO2 content, Desalination And Water Treatment, 208: 273-286. doi.org/10.5004/dwt.2020.26403. ##
[18]. اکبری سنه روجیار.، رحمانی چیانه فرهاد.، مرادی غلامرضا. و شریفنیا شهرام. (1399) تثبیت نانوذرات TiO2 برروی آلومینا سیلیکات طبیعی فرآوری شده جهت تولید هیدروژن: ارزیابی اثر فرآوری شیمیایی پایه و شرایط عملیاتی فرآیند، مجله پژوهش نفت، 30، 30-14.doi: 10.22078/pr.2020.3827.2743##
[19]. Moradi M., Akbari Sene R., Rahmani F. and Rezakazemi M. (2023) Efficient photodegradation of paraquat herbicide over TiO2‑WO3 heterojunction embedded in diatomite matrix and process optimization, Environmental Science and Pollution Research, 30: 99675-99693. ##
[20]. Zhang G., Liu Y., Hashisho Z., Sun Z., Zheng S. and Zhong L. (2020): Adsorption and photocatalytic degradation performances of TiO2/Kieselguhr composite for volatile organic compounds: Effects of key parameters, Applied Surface Science, 525: 146633. doi.org/10.1016/j.apsusc.2020.146633. ##
[21]. Marien C.B.D., Le Pivert M., Azaïs A., M’Bra I.C., Drogui P., Dirany A. and Robert D. (2019) Kinetics and mechanism of Paraquat’s degradation: UV-C photolysis vs UV-C photocatalysis with TiO2/SiC foams, Journal ofHazardous Materials, 370: 164-171. doi.org/10.1016/j.jhazmat.2018.06.009. ##
[22]. Nguyen C.T., Nguyen T.H.H., Van Tung T., Tungtakanpoung D., Sac T.C., Vo T.K.Q. and Kaewlom P. (2023) Paraquat removal by free and immobilized cells of Pseudomonas putida on corn cob biochar, Case Studies in Chemical and Environmental Engineering, 8: 100376. doi.org/10.1016/j.cscee.2023.100376. ##
[23]. Ao M., Liu K., Tang X., Li Z., Peng Q. and Huang J. (2019) BiOCl/TiO2/Kieselguhr composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B, Beilstein journal of nanotechnology, 10: 1412-1422. doi.org/10.3762/bjnano.10.139. ##
[24]. Wu Q. and Zhang Z. (2019) The preparation of self-floating Sm/N co-doped TiO2/Kieselguhr hybrid pellet with enhanced visible-light-responsive photoactivity and reusability, Advanced Powder Technology, 30: 415-422. doi.org/10.1016/j.apt.2018.11.020. ##
[25]. Akbari Sene R., Moradi G., Sharifnia S. and Rahmani F. (2020) Hydrogen evolution via water splitting using TiO2 nanoparticles immobilized on aluminosilicate mineral: synergistic effect of porous mineral and TiO2 content, Desalination and water treatment, 208: 273-286. doi.org/10.5004/dwt.2020.26403. ##
[26]. Akbari Sene R., Sharifnia S. and Moradi G. (2018) On the impact evaluation of various chemical treatments of support on the photocatalytic properties and hydrogen evolution of sonochemically synthesized TiO2/Clinoptilolite, International Journal of Hydrogen Energy, 43: 695-707. doi.org/10.1016/j.ijhydene.2017.11.099. ##
[27]. Guo H., Jiang N., Wang H., Lu N., Shang K., Li J. and Wu Y. (2019) Degradation of antibiotic chloramphenicol in water by pulsed discharge plasma combined with TiO2/WO3 composites: mechanism and degradation pathway, Journal of hazardous materials, 371: 666-676. doi.org/10.1016/j.jhazmat.2019.03.051. ##
[28]. Cherrak R., Hadjel M., Benderdouche N., Adjdir M., Mokhtar A., Khaldi K., Sghier A. and Weidler P.G. (2020) Preparation of Nano-TiO2/Kieselguhr Composites by Non-hydrolytic Sol–Gel Process and its Application in Photocatalytic Degradation of Crystal Violet, Silicon, 12: 927-935. ##
[29]. Hua C., Liu X., Ren S., Zhang C. and Liu W. (2020) Preparation of visible light-responsive photocatalytic paper containing BiVO4@Kieselguhr/MCC/PVBCFs for degradation of organic pollutants, Ecotoxicology and Environmental Safety, 202: 110897. doi.org/10.1016/j.ecoenv.2020.110897. ##
[30]. Jia Z., Li T., Zheng Z., Zhang .J, Liu J., Li R., Wang Y., Zhang X., Wang Y. and Fan C. (2020) The BiOCl/Kieselguhr composites for rapid photocatalytic degradation of ciprofloxacin: Efficiency, toxicity evaluation, mechanisms and pathways, Chemical Engineering Journal, 380: 122422. doi.org/10.1016/j.cej.2019.122422. ##
[31]. Balta Z. and Simsek E.B. (2020) Insights into the photocatalytic behavior of carbon-rich shungite-based WO3/TiO2 catalysts for enhanced dye and pharmaceutical degradation, New Carbon Materials, 35: 371-383. doi.org/10.1016/S1872-5805(20)60495-4. ##
[32]. Khan H., Rigamonti M.G., Patience G.S. and Boffito D.C. (2018) Spray Dried TiO2/WO3 Heterostructure for Photocatalytic Applications with Residual Activity in the Dark, Applied Catalysis B: Environmental, 226: 311-323. doi.org/10.1016/j.apcatb.2017.12.049. ##
[33]. Sun Z., Bai C., Zheng S., Yang X. and Frost R.L. (2013) A comparative study of different porous amorphous silica mineralssupported TiO2 catalysts, Applied Catalysis A: General, 458: 103-110. doi.org/10.1016/j.apcata.2013.03.035. ##
[34]. Barbosa I.A., Zanatta L.D., Espimpolo D.M., Silva D.L., Nascimento L.F., Zanardi F.B., Sousa Filho P.C., Serra O.A. and Iamamoto Y. (2017) Magnetic diatomite(Kieselguhr)/Fe2O3/TiO2 composite as an efficient photo-Fenton system for dye degradation, Solid State Sciences, 72: 14-20. doi.org/10.1016/j.solidstatesciences.2017.08.007. ##