[1]. Stone, H. L., & Crump, J. S. (1956). The effect of gas composition upon oil recovery by gas drive. Transactions of the AIME, 207(01), 105-110. doi.org/10.2118/521-G.##
[2]. Koch, H. A. (1956). High pressure gas injection is a success. World Oil, 143(5), 260-264.##
[3]. Garmeh, G., & Johns, R. T. (2010). Upscaling of miscible floods in heterogeneous reservoirs considering reservoir mixing. SPE Reservoir Evaluation & Engineering, 13(05), 747-763. doi.org/10.2118/124000-PA.##
[4]. Jia, B., Tsau, J. S., & Barati, R. (2019). A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel, 236, 404-427. doi.org/10.1016/j.fuel.2018.08.103.##
[5]. Gozalpour, F., Ren, S. R., & Tohidi, B. (2005). CO2 EOR and storage in oil reservoir. Oil & gas science and technology, 60(3), 537-546. doi.org/10.2516/ogst:2005036.##
[6]. Holtz, M. H., Nance, P. K., & Finley, R. J. (2001). Reduction of greenhouse gas emissions through CO2 EOR in Texas. Environmental Geosciences, 8(3), 187-199. doi.org/10.1046/j.1526-0984.2001.008003187.x.##
[7]. Li, H., Zheng, S., & Yang, D. (2013). Enhanced swelling effect and viscosity reduction of solvent (s)/CO2/heavy-oil systems. Spe Journal, 18(04), 695-707. doi.org/10.2118/150168-PA.##
[8]. Yongle, H. U., Mingqiang, H. A. O., Guoli, C. H. E. N., Ruiyan, S. U. N., & Shi, L. I. (2019). Technologies and practice of CO2 flooding and sequestration in China. Petroleum Exploration and Development, 46(4), 753-766. doi.org/10.1016/S1876-3804(19)60233-8.##
[9]. Chen, X., & Mohanty, K. K. (2020). Pore-scale mechanisms of immiscible and miscible gas injection in fractured carbonates. Fuel, 275, 117909. doi.org/10.1016/j.fuel.2020.117909.##
[10]. Succi, S. (2001). The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford university press.##
[11]. Raeini, A. Q., Bijeljic, B., & Blunt, M. J. (2015). Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images. Advances in Water Resources, 83, 102-110. doi.org/10.1016/j.advwatres.2015.05.008.##
[12]. Blunt, M. J. (2017). Multiphase flow in permeable media: A pore-scale perspective. Cambridge university press.##
[13]. Rokhforouz, M. R., & Akhlaghi Amiri, H. A. (2017). Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium. Physics of Fluids, 29(6). doi.org/10.1063/1.4985290.##
[14]. Liu, H., Zhu, Z., Patrick, W., Liu, J., Lei, H., & Zhang, L. (2020). Pore-scale numerical simulation of supercritical CO2 migration in porous and fractured media saturated with water. Advances in Geo-Energy Research, 4(4), 419-434.##
[15]. Mishra, S., Raziperchikolaee, S., & Le Gallo, Y. (2020). Modeling Aspects of CO2 Injection in a Network of Fractures. In CO2 Injection in the Network of Carbonate Fractures (pp. 163-189). Cham: Springer International Publishing.##
[16]. سبحانی اوغاز، ع. و امامی نیری، م.(2023). اثر خواص هندسی شکاف بر جریان و حساسیتسنجی دینامیک پارامترهای شکاف در مخازن شکاف دار. پژوهش نفت. 32(1401-6)، 49-64..
doi: 10.22078/pr.2022.4893.3188##
[17]. مسیحی، م. و فیروزمند ه. (2024). بررسی اثرات امتزاجپذیری، ترشوندگی و سرعت تزریق در تزریق دی اکسیدکربن در مقیاس حفره سنگ مخزن. پژوهش نفت. 34(1403-1): 49-51. doi: 10.22078/pr.2023.5230.3318.##
[18]. مسیحی، م. و فراهانی، ا. (2024). بررسی وابستگی پل مایع و فشار مویینگی شکاف به خواص سنگ شکافدار در مکانیزم ریزش ثقلی. پژوهش نفت. 1403-4 (2024): 3-15..doi: 10.22078/pr.2024.5330.3374##
[19]. AlMubarak, T., AlKhaldi, M., AlMubarak, M., Rafie, M., Al-Ibrahim, H., & AlBokhari, N. (2015). Investigation of acid-induced emulsion and asphaltene precipitation in low permeability carbonate reservoirs. In SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition (pp. SPE-178034). SPE. doi.org/10.2118/178034-MS.##
[20]. Suzuki, F. (1993, May). Precipitation of asphaltic sludge during acid stimulation treatment: cause, effect, and prevention. In SPE Western Regional Meeting (pp. SPE-26036). SPE. doi.org/10.2118/26036-MS.##
[21]. Yue, P., Zhou, C., Feng, J. J., Ollivier-Gooch, C. F., & Hu, H. H. (2006). Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. Journal of Computational Physics, 219(1), 47-67. doi.org/10.1016/j.jcp.2006.03.016.##
[22]. Amiri, H. A., & Hamouda, A. A. (2013). Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dual-permeability porous medium. International Journal of Multiphase Flow, 52, 22-34. doi.org/10.1016/j.ijmultiphaseflow.2012.12.006.##
[23]. Amiri, H. A., & Hamouda, A. A. (2014). Pore-scale modeling of non-isothermal two phase flow in 2D porous media: Influences of viscosity, capillarity, wettability and heterogeneity. International Journal of Multiphase Flow, 61, 14-27. doi.org/10.1016/j.ijmultiphaseflow.2014.01.001.##
[24]. Hoteit, H. (2013). Modeling diffusion and gas–oil mass transfer in fractured reservoirs. Journal of Petroleum Science and Engineering, 105, 1-17. doi.org/10.1016/j.petrol.2013.03.007.##
[25]. Behnoud, P., Khorsand Movaghar, M. R., & Sabooniha, E. (2023). Numerical analysis of pore-scale CO2-EOR at near-miscible flow condition to perceive the displacement mechanism. Scientific Reports, 13(1), 12632.##
[26]. Shaver, R. D., Robinson Jr, R. L., & Gasem, K. A. M. (2001). An automated apparatus for equilibrium phase compositions, densities, and interfacial tensions: data for carbon dioxide+ decane. Fluid phase equilibria, 179(1-2), 43-66. doi.org/10.1016/S0378-3812(00)00475-1.##