[1]. Mojiri, A., Aziz, H. A., Zaman, N. Q., Aziz, S. Q. & Zahed, M. A. )2016 .(Metals removal from municipal landfill leachate and wastewater using adsorbents combined with biological method. Desalin. Water Treat, 57, 2819–2833. doi.org/10.1080/19443994.2014.983180.##
[2]. Mojiri, A., Ziyang, L., Hui, W., Ahmad, Z., Tajuddin, R. M., Abu Amr, S. S., Kindaichi, T., Aziz, H. A. & Farraji, H. )2017.( Concentrated landfill leachate treatment with a combined system including electro-ozonation and composite adsorbent augmented sequencing batch reactor process. Process Saf. Environ. Manage, 111, 253–262. doi.org/10.1016/j.psep.2017.07.013. .##
[3]. Gotvajn, A. Z. & Pavko, A. )2018. ( Perspectives on biological treatment of sanitary landfill leachate. In: Wastewater Treatment Engineering (M. Samer, ed.). IntechOpen, UK.
[4]. Alzamora BR, Barros RTV.(2020) Review of municipal waste management charging methods in different countries. Waste Manage ,115:47–55. .##
[5]. Baawain, M. S., Al-Mamun, A., Omidvarborna, H., Al-Mujaini, F., & Choudri, B. S. (2019). Residents' concerns and attitudes towards municipal solid waste management: opportunities for improved management. International Journal of Environment and Waste Management, 24(1), 93-106. doi.org/10.1504/IJEWM.2019.100663. .##
[6]. Cetrulo, T. B., Marques, R. C., Cetrulo, N. M., Pinto, F. S., Moreira, R. M., Mendizábal-Cortés, A. D., & Malheiros, T. F. (2018). Effectiveness of solid waste policies in developing countries: A case study in Brazil. Journal of cleaner production, 205, 179-187. doi.org/10.1016/j.jclepro.2018.09.094. ##
[7]. Chen, D. M. C., Bodirsky, B. L., Krueger, T., Mishra, A., & Popp, A. (2020). The world’s growing municipal solid waste: trends and impacts. Environmental Research Letters, 15(7), 074021. ##
[8]. Yatsunthea T, Chaiyat N.(2020). A very small power plant – Municipal waste of the organic Rankine cycle and incinerator from medical and municipal wastes. Therm Sci Eng Progress ,18:100555. doi.org/10.1016/j.tsep.2020.100555. ##
[9]. Botello-´Alvarez JE, Rivas-García P, Fausto-Castro L, Estrada-Baltazar A, Gomez- Gonzalez R.(2018). Informal collection, recycling and export of valuable waste as transcendent factor in the municipal solid waste management: a Latin-American reality. J Cleaner Prod ,182:485–95. doi.org/10.1016/j.jclepro.2018.02.065. ##
[10]. Ozbay G, Jones M, Gadde M, Isah S, Attarwala T.(2021). Design and operation of effective landfills with minimal effects on the environment and human health. J Environ Public Health ,6921607. doi.org/10.1155/2021/6921607. ##
[11]. Sauve G, Van Acker K.(2020). The environmental impacts of municipal solid waste landfills in Europe: a life cycle assessment of proper reference cases to support decision making. J Environ Manage ,261:110216. doi.org/10.1016/j.jenvman.2020.110216. ##
[12]. Owusu-Nimo F, Oduro-Kwarteng S, Essandoh H, Wayo F, Shamudeen M. (2019).Characteristics and management of landfill solid waste in Kumasi, Ghana. Sci Afr ,3:e00052. doi.org/10.1016/j.sciaf.2019.e00052. ##
[13]. Zhou B, Sun C, Yi H.(2017). Solid waste disposal in chinese cities: an evaluation of local performance. Sustainability ,9. doi.org/10.3390/su9122234. ##
[14]. Zamri, M. F. M. A., Kamaruddin, M. A., Yusoff, M. S. & Aziz,H. A. (2017). Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: isotherm and kinetic study. Appl. Water Sci, 7, 581–590. doi.org/10.1007/s13201-015-0266-2. ##
[15]. Chávez, R. P., Pizarro, E. C. C. & Galiano, Y. L. )2019). Landfill leachate treatment using activated carbon obtained from coffee waste. Eng. Sanit. Ambient. 24, 8330842. doi.org/10.1590/S1413-41522019178655.
[16]. Eggen, T., Moeder, M. & Arukwe, A.)2019.( Municipal landfill leachates: a significant source for new and emerging pollutants. Sci. Total Environ. 408 (21), 5147–5157. doi:10.1016/j.scitotenv,07.049. ##
[17]. Xaypanya, P., Takemura, J., Chiemchaisri, C., Seingheng, H. &Tanchuling, M. A. N. )2018( Characterization of landfill leachates and sediments in major cities of Indochina peninsular countries – heavy metal partitioning in municipal solid waste leachate. Environments 5, 65. doi.org/10.3390/environments5060065.
[18]. Hodaifa G.(2018). Treatment of Olive Oil Mill Wastewater by UV-Light and UV/H2O2 System. Int J Green Technol,1(1):46–53. ##
[19]. Chen Y, Liu C, Nie J, Wu S, Wang D.(2014) .Removal of COD and decolorizing from landfill leachate by Fenton’s reagent advanced oxidation. Clean Technol Environ Policy,16(1),189-93, doi: 10.1007/s10098-013-0627-1. ##
[20]. Amouei A, Pouramir M, Asgharnia H, Mehdinia M, Shirmardi M, Fallah H, et al.. (2021) Evaluation of the efficiency of electrocoagulation process in removing cyanide, nitrate, turbidity, and chemical oxygen demand from landfill leachate. Environ Health Eng Manag,8(3),237-44, doi: 10.34172/ehem.2021.27. ##
[21]. Ding X, Ai Z, Zhang L.(2021). Design of a visible light driven pHoto-electrochemical/electro-Fenton coupling oxidation system for wastewater treatment. J Hazard Mater,239-240:233-40. doi: 10.1016/j.jhazmat.2012.08.070. ##
[22]. Babaei S, Sabour MR, Moftakhari Anasori Movahed S.(2021). Combined landfill leachate treatment methods: an overview. Environ Sci Pollut Res Int,28(42):59594-607. doi: 10.1007/s11356-021-16358-0. ##
[23]. Zazouli MA, Yousefi Z, Babanezhad E, Ala A. (2024).Evaluation of combined efficiency of conventional coagulationflocculation process with advanced oxidation process (sulfate-hydroxyl radical) in leachate treatment. Environ Eng Res ,29(3):230548. doi: 10.4491/eer.2023.548. ##
[24]. Han M, Duan X, Cao G, Zhu S, Ho SH.(2020). GrapHitic nitridecatalyzed advanced oxidation processes (AOPs) for landfill leachate treatment: a mini review. Process Saf Environ Prot,139:230-40. doi: 10.1016/j.psep.2020.04.046. ##
[25]. Roudi, A. M., Akhlaghi, E., Chelliapan, S., Kaboli, A., Roudi, A. M., Aslani, H., & Selvam, S. B. (2015). Treatment of landfill leachate via Advanced Oxidation Process (AOPs)-A review. ISSN (Print): 0975-8585. URL: http://rjpbcs.com/pdf/2015_6(4)/[44].pdf. ##
[26]. Haapea P., Korhonen S., Tuhkanen T.(2021). Treatment of industrial landfill leachates by chemical and biological methods: ozonation, ozonation + hydrogen peroxide, hydrogen peroxide and biological posttreatment for ozonated water, Ozone Science Engineering, 24(5), 369-378. doi.org/10.1080/01919510208901627. ##
[27]. Chys, M.; Oloibiri, V.A.; Audenaert, W.T.; Demeestere, K.; Van Hulle, S.W.(2015). Ozonation of biologically treated landfill leachate: Efficiency and insights in organic conversions. Chem. Eng. J, 277, 104–111. doi.org/10.1016/j.cej.2015.04.099. ##
[28]. METCALF, Leonard; EDDY, Harrison. Wastewater engineering. New York: McGraw-Hill, 2014. ##
[29]. Sasirekha, P., Balaji, A. K., Amarnath, H., & Balasubramaniyan, A. L. (2018). Removal of oil and grease from wastewater by using natural adsorbent. nternational Journal of Applied Engineering Researc, 13(10), 7246-8.,13(10),7246–8. ##
[30]. Rocha, E. M., Vilar, V. J., Fonseca, A., Saraiva, I., & Boaventura, R. A. (2011). Landfill leachate treatment by solar-driven AOPs. Solar Energy, 85(1), 46-56. doi.org/10.1016/j.solener.2010.11.001. ##
[31]. Mierzwa, J. C., Subtil, E. L., & Hespanhol, I. (2012). UV/H2O2 process performance improvement by ultrafiltration and physicochemical clarification systems for industrial effluent pretreatment. Revista Ambiente & Água, 7, 31-40. doi.org/10.4136/ambi-agua.926. ##
[32]. Biń, A. K., & Sobera-Madej, S. (2012). Comparison of the advanced oxidation processes (UV, UV/H2O2 and O3) for the removal of antibiotic substances during wastewater treatment. Ozone: Science & Engineering, 34(2), 136-139. doi.org/10.1080/01919512.2012.650130. ##
[33]. Cesaro, A., Naddeo, V., & Belgiorno, V. (2013). Wastewater treatment by combination of advanced oxidation processes and conventional biological systems. Journal of Bioremediation & Biodegradation, 4(8), 1-8. doi:10.4172/2155-6199.1000208. ##
[34]. Gozan, M. (2014). Oil extraction from oil sludge and TPH elimination of solids/water by ozonation. Energy and Environment Research, 4(2), 22. ISSN 1927-0569 E-ISSN 1927-0577. ##
[35]. Hodaifa, G., Agabo, C., Moya, A. J., Pacheco, R., & Mateo, S. (2015). Treatment of olive oil mill wastewater by UV-light and UV/H2O2 system. International Journal of Green Technology, 1, 46-53. ##
[36]. da Silva, S. S., Chiavone-Filho, O., de Barros Neto, E. L., & Foletto, E. L. (2015). Oil removal from produced water by conjugation of flotation and photo-Fenton processes. Journal of environmental management, 147, 257-263. doi.org/10.1016/j.jenvman.2014.08.021. ##
[37]. Shutova, Y., Karna, B. L., Hambly, A. C., Lau, B., Henderson, R. K., & Le-Clech, P. (2016). Enhancing organic matter removal in desalination pretreatment systems by application of dissolved air flotation. Desalination, 383, 12-21. doi.org/10.1016/j.desal.2015.12.018. ##
[38]. Aziz, H. A., AlGburi, H. R., Alazaiza, M. Y. D., & Noor, A. F. M. (2021). Sequential treatment for stabilized landfill leachate by ozonation–adsorption and adsorption–ozonation methods. International Journal of Environmental Science and Technology, 18(4), 861-870. doi:10.1007/s13762-020-02891-x. ##
[39]. Ghime, D., Goru, P., Ojha, S., & Ghosh, P. (2019). Oxidative decolorization of a Malachite Green Oxalate dye through the Photochemical Advanced Oxidation Processes. URL: https://journal.gnest.org/sites/default/files/Submissions/gnest_03000/gnest_03000_published.pdf.
[40]. Kurian, M. (2021). Advanced oxidation processes and nanomaterials-a review. Cleaner Engineering and Technology, 2, 100090. doi.org/10.1016/j.clet.2021.100090. ##
[41]. Chong, M. N., Cho, Y. J., Poh, P. E., & Jin, B. (2015). Evaluation of Titanium dioxide photocatalytic technology for the treatment of reactive Black 5 dye in synthetic and real greywater effluents. Journal of Cleaner Production, 89, 196-202. doi.org/10.1016/j.jclepro.2014.11.014. ##
[42]. Murgolo, S., Petronella, F., Ciannarella, R., Comparelli, R., Agostiano, A., Curri, M. L., & Mascolo, G. (2015). UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes. Catalysis Today, 240, 114-124. doi.org/10.1016/j.cattod.2014.04.021. ##
[43]. Van, H. T., Nguyen, L. H., Hoang, T. K., Tran, T. P., Vo, A. T., Pham, T. T., & Nguyen, X. C. (2019). Using FeO-constituted iron slag wastes as heterogeneous catalyst for Fenton and ozonation processes to degrade Reactive Red 24 from aqueous solution. Separation and Purification Technology, 224, 431-442. doi.org/10.1016/j.seppur.2019.05.048. ##
[44]. Wang, Y., Wang, Y., Yu, L., Wang, R., & Zhang, X. (2020). Highly effective microwave-induced catalytic degradation of Bisphenol A in aqueous solution using double-perovskite intercalated montmorillonite nanocomposite. Hien, N.T., Nguyen, L.H., Van, H.T., Nguyen, T.D., Nguyen, T.H.V., Chu, T.H.H., Nguyen, T.V., Trinh, V.T., Vu, X.H. and Aziz, K.H.H. (2020). Heterogeneous catalyst ozonation of Direct Black 22 from aqueous solution in the presence of metal slags originating from industrial solid wastes. Separation and Purification Technology, 233, 115961. doi.org/10.1016/j.seppur.2019.115961. ##