محاسبه خواص ترموفیزیکی گاز سنتز در فشار پایین با استفاده از پتانسیل بین مولکولی مورس تعمیم یافته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده شیمی ارومیه، دانشگاه ارومیه، ایران

2 دانشکده شیمی، دانشکدگان علوم پایه، دانشگاه تهران

3 گروه فن‌آوری‌های تصفیه گاز، پژوهشکده فن‌آوری‌های فراورش و انتقال گاز، پژوهشگاه صنعت نفت

10.22078/pr.2025.5556.3468

چکیده

در این پژوهش ابتدا پتانسیل بین مولکولی با استفاده از روش وارونی مستقیم داده‌های تجربی ویسکوزیته و ضریب دوم ویریال برای برهم‌کنش H2–H2، CO–CO و H2–CO به‌دست آمد. پتانسیل به‌دست آمده توسط مدل سه ضابطه ای مورس- چند جمله‌ای-وندروالس (MSV) برازش گردید. سپس با استفاده از مدل MSV خواص انتقالی (شامل ویسکوزیته، ضریب نفوذ و نفوذپذیری گرمایی) و همچنین ضریب دوم ویریال برای هیدروژن خالص، کربن مونواکسید خالص و مخلوط هیدروژن-کربن مونواکسید محاسبه گردید. مقایسه مقادیر محاسبه شده در این کار با داده‌های تجربی معتبر نشان می‌دهد که پتانسیل بین مولکولی MSV، با میانگین درصد انحراف نسبی بسیار پایین (برای ویسکوزیته 61/0=AAD% و برای ضریب نفوذ 15/1=AAD%)، خواص ترموفیزیکی سیستم‌های خالص و مخلوط فوق الذکر را با صحت بسیار بالایی نسبت به روش‌های مبتنی بر حالات متناظر چانگ (97/8=AAD%)، لوکاس (87/2=AAD%) و سوپرترپ (00/4=AAD%) به‌دست می‌دهد. در این مقاله مقادیر عددی خواص ترموفیزیکی هیدروژن و کربن مونواکسید خالص و مخلوط آنها جهت کاربردهای عملی و مهندسی به‌صورت تابعی از دما ارائه شده است.   

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Calculation of Thermophysical Properties of Syn-gas at Low Pressures Using an Extended Morse Potential

نویسندگان [English]

  • Ebrahim Nemati 1
  • Ali Maghari 2
  • Amir Hossein Jalili 3
1 Department of Physical Chemistry, Faculty of Chemistry, Urmia University
2 Department of Physical Chemistry, School of Chemistry, University of Tehran, Tehran, Iran
3 Gas Refining Technology Group, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
چکیده [English]

In this study, the intermolecular potential between H2–H2, CO–CO, and H2–CO pairs was obtained using the direct inversion method, which entailed the analysis of experimental data on viscosity and the second virial coefficient. Subsequently, the obtained potential was fitted using a Morse-Spline-Van der Waals (MSV) stepwise model. The MSV model was subsequently employed to calculate a series of transport properties, including viscosity, diffusion coefficient, thermal diffusivity, and the second virial coefficient, for pure hydrogen, pure carbon monoxide, and hydrogen-carbon monoxide mixtures. A comparison of the calculated values with the reliable experimental data reveals that the MSV intermolecular potential, with an average relative percentage deviation of 0.61% for viscosity and 1.15% for the diffusion coefficient, is an excellent representation of the thermophysical properties of the aforementioned systems. The results were obtained with a high degree of accuracy, particularly in comparison to the methods based on the corresponding states laws of Chang (AAD% = 8.97), Lucas (AAD% = 2.87), and Supertrap (AAD% = 4.00). This article presents the numerical values of the thermophysical properties of pure hydrogen and carbon monoxide and their mixture as a function of temperature, with a particular focus on their practical and engineering applications.

کلیدواژه‌ها [English]

  • Hydrogen
  • Carbon Monoxide
  • Synthesis Gas
  • Viscosity
  • Diffusion Coefficient
  • Second Virial Coefficient
[1]. Anderson, R.B., Kolbel, H., Ralke, M., (1984). The Fischer–Tropsch Synthesis, 1st ed., Academic Press, Florida.##
[2]. Cormos, C.-C., Starr, F., Tzimas, E., Peteves, S., (2008). Innovative concepts for hydrogen production processes based on coal gasification with capture, International Journal of Hydrogen Energy, 33 (2008) 1286-1294. doi.org/10.1016/j.ijhydene.2007.12.048.##
[3]. Consonni, S., Viganò, F., (2005). Decarbonized hydrogen and electricity from natural gas, International Journal of Hydrogen Energy, 30 (2005) 701-718. doi.org/10.1016/j.ijhydene.2004.07.001.##
[4]. Boushehri, A., Viehland, L.A., Mason, E.A., (1978). Direct determination of interaction potentials from gas viscosity measurements alone, Chemical Physics, 28 (1978) 313-318. doi.org/10.1016/0301-0104(78)80008-1.##
[5]. Maitland, G.C., Mason, E.A., Viehland, L.A., Wakeham, W.A., (1978). A justification of methods for the inversion of gas transport coefficients, Molecular Physics, 36 (1978) 797-816. doi.org/10.1080/00268977800101951.##
[6]. Viehland, L.A., Harrington, M.M., Mason, E.A., (1976). Direct determination of ion-neutral molecule interaction potentials from gaseous ion mobility measurements, Chemical Physics, 17 (1976) 433-441. doi.org/10.1016/S0301-0104(76)80007-9.##
[7]. Clancy, P., Gough, D.W., Matthews, G.P., Smith, E.B., Maitland, G.C., (1975). Simplified methods for the inversion of thermophysical data, Molecular Physics, 30 (1975) 1397-1407. doi.org/10.1080/00268977500102921.##
[8]. Gough, D.W., Maitland, G.C., Smith, E.B., (1972). The direct determination of intermolecular potential energy functions from gas viscosity measurements, Molecular Physics, 24 (1972) 151-161. doi.org/10.1080/00268977200101311.##
[9]. Gough, D.W., Matthews, G.P., Smith, E.B., Maitland, G.C., (1975). The direct determination of pair potential energy functions for mixed interactions: Ar-Kr, Molecular Physics, 29 (1975) 1759-1765. doi.org/10.1080/00268977500101551.##
[10]. Gough, D.W., Smith, E.B., Maitland, G.C., (1973). The intermolecular potential energy functions of krypton and xenon, Molecular Physics, 25 (1973) 1433-1441. doi.org/10.1080/00268977300101221.##
[11]. Gough, D.W., Smith, E.B., Maitland, G.C., (1974). The pair potential energy function for krypton, Molecular Physics, 27 (1974) 867-872. doi.org/10.1080/00268977400100781.##
[12]. Maitland, G.C., (1973). The determination of the intermolecular potential energy function of neon from spectroscopic, equilibrium and transport data, Molecular Physics, 26 (1973) 513-528. doi.org/10.1080/00268977300101851.##
[13]. Maitland, G.C., Smith, E.B., (1972). The direct determination of potential energy functions from second virial coefficients, Molecular Physics, 24 (1972) 1185-1201. doi.org/10.1080/00268977200102281.##
[14]. Assael, M.J., Mixafendi, S., Wakeham, W.A., (1986). The viscosity and thermal conductivity of normal hydrogen in the limit of zero density, Journal of Physical and Chemical Reference Data, 15 (1986) 1315-1322. doi.org/10.1063/1.555764.##
[15]. Boushehri, A., Bzowski, J., Kestin, J., Mason, E.A., (1987). Equilibrium and transport properties of eleven polyatomic gases at low density, Journal of Physical and Chemical Reference Data, 16 (1987) 445-466. doi.org/10.1063/1.555800.##
[16]. Bzowski, J., Kestin, J., Mason, E.A., Uribe, F.J., (1990). Equilibrium and transport properties of gas mixtures at low density: Eleven polyatomic gases and five noble gases, Journal of Physical and Chemical Reference Data, 19 (1990) 1179-1232. doi.org/10.1063/1.555867.##
[17]. Moghadasi, J., Yousefi, F., Papari, M., Faghihi, M., Mohsenipour, A., (2009). Transport properties in mixtures involving carbon dioxide at low and moderate density: test of several intermolecular potential energies and comparison with experiment, Heat and Mass Transfer, 45 (2009) 1453-1466.##
[18]. Maghari, A., Behnejad, H., Nematbakhsh, F., (1999). Direct determination of the intermolecular potential for H2-H2 from viscosity correlation equation, Journal of the Physical Society of Japan, 68 (1999) 2276-2280. doi.org/10.1143/JPSJ.68.2276.##
[19]. Pack, R.T., Valentini, J.J., Becker, C.H., Buss, R.J., Lee, Y.T., (1982). Multiproperty empirical interatomic potentials for ArXe and KrXe, The Journal of Chemical Physics, 77 (1982) 5475-5485.##
[20]. Rainwater, J.C., (1984). On the phase space subdivision of the second virial coefficient and its consequences for kinetic theory, The Journal of Chemical Physics, 81 (1984) 495-510. doi.org/10.1063/1.447332.##
[21]. Friend, D.G., Rainwater, J.C., (1984). Transport properties of a moderately dense gas, Chemical Physics Letters, 107 (1984) 590-594. doi.org/10.1016/S0009-2614(84)85163-5.##
[22]. Rainwater, J.C., Friend, D.G., (1987). Second viscosity and thermal-conductivity virial coefficients of gases: Extension to low reduced temperature, Physical Review A, 36 (1987) 4062-4066. doi.org/10.1103/PhysRevA.36.4062.##
[23]. Tsuzuki, S., Uchimaru, T., Tanabe, K., (1993). Basis set effects on the intermolecular interaction of the H2-H2 system obtained using ab initio molecular orbital calculations with the Møller-Plesset perturbation correction, Journal of Molecular Structure: THEOCHEM, 280 (1993) 273-281. doi.org/10.1016/0166-1280(93)80014-Q.##
[24]. Borysow, A., Jørgensen, U.G., Fu, Y., (2001). High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres, Journal of Quantitative Spectroscopy and Radiative Transfer, 68 (2001) 235-255. doi.org/10.1016/S0022-4073(00)00023-6.##
[25]. Heßelmann, A., Jansen, G., (2002). Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory, Chemical Physics Letters, 362 (2002) 319-325. doi.org/10.1016/S0009-2614(02)01097-7.##
[26]. Heßelmann, A., Jansen, G., (2003). Intermolecular dispersion energies from time-dependent density functional theory, Chemical Physics Letters, 367 (2003) 778-784. doi.org/10.1016/S0009-2614(02)01796-7.##
[27]. van der Pol, A., van der Avoird, A., Wormer, P.E.S., (1990). An abinitio intermolecular potential for the carbon monoxide dimer (CO)2, The Journal of Chemical Physics, 92 (1990) 7498-7504. doi.org/10.1063/1.458185.##
[28]. Meredith, A.W., Stone, A.J., (1998). An ab initio and diffusion Monte Carlo study of the potential energy surface of the co dimer, The Journal of Physical Chemistry A, 102 (1998) 434-445. doi.org/10.1021/jp972114b.##
[29]. Rode, M., Sadlej, J., Moszynski, R., Wormer, P.E.S., van der Avoird, A., (1999). The importance ofhigh-order correlation effects for the CO-CO interaction potential, Chemical Physics Letters, 314 (1999) 326-332. doi.org/10.1016/S0009-2614(99)01168-9.##
[30]. Heck, E.L., Dickinson, A.S., (1995). Traditional transport properties of CO, Physica A: Statistical Mechanics and its Applications, 217 (1995) 107-123. doi.org/10.1016/0378-4371(95)00099-S. doi.org/10.1016/0378-4371(95)00099-S.##
[31]. Green, S., Thaddeus, P., (1976). Rotational excitation of CO by collisions with He, H, and H2 under conditions in interstellar clouds, The Astrophysical Journal 205 (1976) 766-785.##
[32]. McKee, C.F., Storey, J.W.V., Watson, D.M., Green, S., (1982). Far-infrared rotational emission by carbon monoxide, The Astrophysical Journal, 259 (1982) 647-656.##
[33]. Schinke, R., Engel, V., Buck, U., Meyer, H., Diercksen, G.H.F., (1985). Rate constants for rotational transitions of CO scattered by para-hydrogen, The Astrophysical Journal, 299 (1985) 939-946. ISSN 0004-637X. ISSN 0004-637X.##
[34]. Jankowski, P., Szalewicz, K., (1998). Ab initio potential energy surface and infrared spectra of H2-CO and D2-CO van der Waals complexes, The Journal of Chemical Physics, 108 (1998) 3554-3565. doi.org/10.1063/1.475347. doi.org/10.1063/1.475347.##
[35]. Poling, B.E., Prausnitz, J.M., O’Connell, J.P., (2001). The Properties of Gases and Liquids, McGraw-Hill, Boston. doi: 10.1036/0070116822.##
[36]. Viehland, L.A., Mason, E.A., Morrison, W.F., Flannery, M.R., (1975). Tables of transport collision integrals for (n, 6, 4) ion-neutral potentials, Atomic Data and Nuclear Data Tables, 16 (1975) 495-514. doi.org/10.1016/0092-640X(75)90022-4.##
[37]. O›Hara, H., Smith, F.J., (1970). The efficient calculation of the transport properties of a dilute gas to a pre scribed accuracy, Journal of Computational Physics, 5 (1970) 328-344. doi.org/10.1016/0021-9991(70)90065-3.##
[38]. O›Hara, H., Smith, F.J., (1971). Transport collision integrals for a dilute gas, Computer Physics Communications, 2 (1971) 47-54. doi.org/10.1016/0010-4655(71)90014-2.##
[39]. Dymond, J.H., Marsh, K.N., Wilhoit, R.C., Wong, K.C., (2003). Virial Coefficients of Pure Gases and Mixtures, Landolt-Börnstein, Berlin, Germany.##
[40]. Viehland, L.A., Chang, Y., (2010). Transport cross sections for collisions between particles, Computer Physics Communications, 181 (2010) 1687-1696. doi.org/10.1016/j.cpc.2010.06.008.##
[41]. Lucas, K., (1980). Phase Equilibria and Fluid Properties in the Chemical Industry, Dechema, Frankfurt.##
[42]. Chung, T.H., Ajlan, M., Lee, L.L., Starling, K.E., (1988). Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Industrial & Engineering Chemistry Research, 27 (1988) 671-679. doi.org/10.1021/ie00076a024.##
[43]. Chung, T.H., Lee, L.L., Starling, K.E., (1984). Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity, Industrial & Engineering Chemistry Fundamentals, 23 (1984) 8-13. doi.org/10.1021/i100013a002.##
[44]. Huber, M.L., (2007). Thermophysical Properties of Hydrocarbon Mixtures Database (SUPERTRAPP), NIST Standard Reference Database in, U.S. Department of Commerce, NIST, Colorado.##
[45]. Kestin, J., Ro, S.T., Wakeham, W.A., (1983). The transport properties of binary mixtures of hydrogen with CO, CO2 and CH4, Physica A: Statistical Mechanics and its Applications, 119 (1983) 615-638. doi.org/10.1016/0378-4371(83)90113-9.##
[46]. Vugts, H.F., Boerboom, A.J.H., Los, J., (1970). Diffusion coefficients of isotopic mixtures of CO and N2, Physica, 50 (1970) 593-605. doi.org/10.1016/0031-8914(70)90216-8.##
[47]. Vargaftik, N., Vinogradov, Y.K., Yargin, V.S., (1996). Handbook of Physical Properties of Liquids and Gases, 3th ed., Begell House, Inc., New York. doi:10.1615/978-1-56700-063-4.0.##
[48]. Gavril, D., Atta, K.R., Karaiskakis, G., (2004). Determination of collision cross-sectional parameters from experimentally measured gas diffusion coefficients, Fluid Phase Equilibria, 218 (2004) 177-188. doi.org/10.1016/j.fluid.2003.12.010.##
[49]. Madan, M., (1953). Transport properties of some gas mixtures, Proc. Nat. Inst. Sci. India, 19 (1953) 713-719.##
[50]. Kielich, S., (1962). Second virial coefficients for unlike non-dipolar molecules, Physica, 28 (1962) 511-520. doi.org/10.1016/0031-8914(62)90038-1.##
[51]. McQuarrie, D.A., (1976). Statistical Mechanics, Harper & Row, Publishers, Inc., New York.##
[52]. Pople, J.A., (1954). The Statistical Mechanics of Assemblies of Axially Symmetric Molecules. II. Second Virial Coefficients, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 221 (1954) 508-516. doi.org/10.1098/rspa.1954.0045.##
[53]. Pople, J.A., (1954). The Statistical Mechanics of Assemblies of Axially Symmetric Molecules. I. General Theory, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 221 (1954) 498-507. doi.org/10.1098/rspa.1954.0044.##
[54]. Buckingham, A.D., Pople, J.A., (1955). The statistical mechanics of imperfect polar gases. Part 1.-Second virial coefficients, Transactions of the Faraday Society, 51 (1955) 1173-1179. doi.org/10.1039/TF9555101173.##
[55]. Kielich, S., (1965). The equation of state of multipolar gases, Physica, 31 (1965) 444-460. doi.org/10.1016/0031-8914(65)90072-8.##
[56]. Boushehri, A., Mason, E.A., Kestin, J., (1986). Improved tables for the calculation of nonspherical contributions to second virial coefficients, International Journal of Thermophysics, 7 (1986) 1115-1133.##
[57]. Maghari, A., Moosavi, H., (1997). Modified numerical tables for the calculation of non-spherical contribution to second virial coefficients and the correlation equations of state for CO2, CS2, and C6H6, Journal of Sciences, Islamic Republic of Iran, 8 (1997) 108-116.##
[58]. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., (1964). Molecular Theory of Gases and Liquids, 2nd ed., Wiley, New York.##
[59]. Mitroy, J., Bromley, M.W.J., (2005). Higher-order Cn dispersion coefficients for hydrogen, Physical Review A, 71 (2005) 032709. DOI: https://doi.org/10.1103/PhysRevA.71.032709.##
[60]. Elias, E., Hoang, N., Sommer, J., Schramm, B., (1986). Die zweiten Virialkoeffizienten von Helium-Gasmischungen im Bereich unterhalb Zimmertemperatur, Berichte der Bunsengesellschaft für physikalische Chemie, 90 (1986) 342-351. doi.org/10.1002/bbpc.19860900406.##