[1]. Anderson, R.B., Kolbel, H., Ralke, M., (1984). The Fischer–Tropsch Synthesis, 1st ed., Academic Press, Florida.##
[2]. Cormos, C.-C., Starr, F., Tzimas, E., Peteves, S., (2008). Innovative concepts for hydrogen production processes based on coal gasification with capture, International Journal of Hydrogen Energy, 33 (2008) 1286-1294. doi.org/10.1016/j.ijhydene.2007.12.048.##
[3]. Consonni, S., Viganò, F., (2005). Decarbonized hydrogen and electricity from natural gas, International Journal of Hydrogen Energy, 30 (2005) 701-718. doi.org/10.1016/j.ijhydene.2004.07.001.##
[4]. Boushehri, A., Viehland, L.A., Mason, E.A., (1978). Direct determination of interaction potentials from gas viscosity measurements alone, Chemical Physics, 28 (1978) 313-318. doi.org/10.1016/0301-0104(78)80008-1.##
[5]. Maitland, G.C., Mason, E.A., Viehland, L.A., Wakeham, W.A., (1978). A justification of methods for the inversion of gas transport coefficients, Molecular Physics, 36 (1978) 797-816. doi.org/10.1080/00268977800101951.##
[6]. Viehland, L.A., Harrington, M.M., Mason, E.A., (1976). Direct determination of ion-neutral molecule interaction potentials from gaseous ion mobility measurements, Chemical Physics, 17 (1976) 433-441. doi.org/10.1016/S0301-0104(76)80007-9.##
[7]. Clancy, P., Gough, D.W., Matthews, G.P., Smith, E.B., Maitland, G.C., (1975). Simplified methods for the inversion of thermophysical data, Molecular Physics, 30 (1975) 1397-1407. doi.org/10.1080/00268977500102921.##
[8]. Gough, D.W., Maitland, G.C., Smith, E.B., (1972). The direct determination of intermolecular potential energy functions from gas viscosity measurements, Molecular Physics, 24 (1972) 151-161. doi.org/10.1080/00268977200101311.##
[9]. Gough, D.W., Matthews, G.P., Smith, E.B., Maitland, G.C., (1975). The direct determination of pair potential energy functions for mixed interactions: Ar-Kr, Molecular Physics, 29 (1975) 1759-1765. doi.org/10.1080/00268977500101551.##
[10]. Gough, D.W., Smith, E.B., Maitland, G.C., (1973). The intermolecular potential energy functions of krypton and xenon, Molecular Physics, 25 (1973) 1433-1441. doi.org/10.1080/00268977300101221.##
[11]. Gough, D.W., Smith, E.B., Maitland, G.C., (1974). The pair potential energy function for krypton, Molecular Physics, 27 (1974) 867-872. doi.org/10.1080/00268977400100781.##
[12]. Maitland, G.C., (1973). The determination of the intermolecular potential energy function of neon from spectroscopic, equilibrium and transport data, Molecular Physics, 26 (1973) 513-528. doi.org/10.1080/00268977300101851.##
[13]. Maitland, G.C., Smith, E.B., (1972). The direct determination of potential energy functions from second virial coefficients, Molecular Physics, 24 (1972) 1185-1201. doi.org/10.1080/00268977200102281.##
[14]. Assael, M.J., Mixafendi, S., Wakeham, W.A., (1986). The viscosity and thermal conductivity of normal hydrogen in the limit of zero density, Journal of Physical and Chemical Reference Data, 15 (1986) 1315-1322. doi.org/10.1063/1.555764.##
[15]. Boushehri, A., Bzowski, J., Kestin, J., Mason, E.A., (1987). Equilibrium and transport properties of eleven polyatomic gases at low density, Journal of Physical and Chemical Reference Data, 16 (1987) 445-466. doi.org/10.1063/1.555800.##
[16]. Bzowski, J., Kestin, J., Mason, E.A., Uribe, F.J., (1990). Equilibrium and transport properties of gas mixtures at low density: Eleven polyatomic gases and five noble gases, Journal of Physical and Chemical Reference Data, 19 (1990) 1179-1232. doi.org/10.1063/1.555867.##
[17]. Moghadasi, J., Yousefi, F., Papari, M., Faghihi, M., Mohsenipour, A., (2009). Transport properties in mixtures involving carbon dioxide at low and moderate density: test of several intermolecular potential energies and comparison with experiment, Heat and Mass Transfer, 45 (2009) 1453-1466.##
[18]. Maghari, A., Behnejad, H., Nematbakhsh, F., (1999). Direct determination of the intermolecular potential for H2-H2 from viscosity correlation equation, Journal of the Physical Society of Japan, 68 (1999) 2276-2280. doi.org/10.1143/JPSJ.68.2276.##
[19]. Pack, R.T., Valentini, J.J., Becker, C.H., Buss, R.J., Lee, Y.T., (1982). Multiproperty empirical interatomic potentials for ArXe and KrXe, The Journal of Chemical Physics, 77 (1982) 5475-5485.##
[20]. Rainwater, J.C., (1984). On the phase space subdivision of the second virial coefficient and its consequences for kinetic theory, The Journal of Chemical Physics, 81 (1984) 495-510. doi.org/10.1063/1.447332.##
[21]. Friend, D.G., Rainwater, J.C., (1984). Transport properties of a moderately dense gas, Chemical Physics Letters, 107 (1984) 590-594. doi.org/10.1016/S0009-2614(84)85163-5.##
[22]. Rainwater, J.C., Friend, D.G., (1987). Second viscosity and thermal-conductivity virial coefficients of gases: Extension to low reduced temperature, Physical Review A, 36 (1987) 4062-4066. doi.org/10.1103/PhysRevA.36.4062.##
[23]. Tsuzuki, S., Uchimaru, T., Tanabe, K., (1993). Basis set effects on the intermolecular interaction of the H2-H2 system obtained using ab initio molecular orbital calculations with the Møller-Plesset perturbation correction, Journal of Molecular Structure: THEOCHEM, 280 (1993) 273-281. doi.org/10.1016/0166-1280(93)80014-Q.##
[24]. Borysow, A., Jørgensen, U.G., Fu, Y., (2001). High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres, Journal of Quantitative Spectroscopy and Radiative Transfer, 68 (2001) 235-255. doi.org/10.1016/S0022-4073(00)00023-6.##
[25]. Heßelmann, A., Jansen, G., (2002). Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory, Chemical Physics Letters, 362 (2002) 319-325. doi.org/10.1016/S0009-2614(02)01097-7.##
[26]. Heßelmann, A., Jansen, G., (2003). Intermolecular dispersion energies from time-dependent density functional theory, Chemical Physics Letters, 367 (2003) 778-784. doi.org/10.1016/S0009-2614(02)01796-7.##
[27]. van der Pol, A., van der Avoird, A., Wormer, P.E.S., (1990). An abinitio intermolecular potential for the carbon monoxide dimer (CO)2, The Journal of Chemical Physics, 92 (1990) 7498-7504. doi.org/10.1063/1.458185.##
[28]. Meredith, A.W., Stone, A.J., (1998). An ab initio and diffusion Monte Carlo study of the potential energy surface of the co dimer, The Journal of Physical Chemistry A, 102 (1998) 434-445. doi.org/10.1021/jp972114b.##
[29]. Rode, M., Sadlej, J., Moszynski, R., Wormer, P.E.S., van der Avoird, A., (1999). The importance ofhigh-order correlation effects for the CO-CO interaction potential, Chemical Physics Letters, 314 (1999) 326-332. doi.org/10.1016/S0009-2614(99)01168-9.##
[30]. Heck, E.L., Dickinson, A.S., (1995). Traditional transport properties of CO, Physica A: Statistical Mechanics and its Applications, 217 (1995) 107-123. doi.org/10.1016/0378-4371(95)00099-S. doi.org/10.1016/0378-4371(95)00099-S.##
[31]. Green, S., Thaddeus, P., (1976). Rotational excitation of CO by collisions with He, H, and H2 under conditions in interstellar clouds, The Astrophysical Journal 205 (1976) 766-785.##
[32]. McKee, C.F., Storey, J.W.V., Watson, D.M., Green, S., (1982). Far-infrared rotational emission by carbon monoxide, The Astrophysical Journal, 259 (1982) 647-656.##
[33]. Schinke, R., Engel, V., Buck, U., Meyer, H., Diercksen, G.H.F., (1985). Rate constants for rotational transitions of CO scattered by para-hydrogen, The Astrophysical Journal, 299 (1985) 939-946. ISSN 0004-637X. ISSN 0004-637X.##
[34]. Jankowski, P., Szalewicz, K., (1998). Ab initio potential energy surface and infrared spectra of H2-CO and D2-CO van der Waals complexes, The Journal of Chemical Physics, 108 (1998) 3554-3565. doi.org/10.1063/1.475347. doi.org/10.1063/1.475347.##
[35]. Poling, B.E., Prausnitz, J.M., O’Connell, J.P., (2001). The Properties of Gases and Liquids, McGraw-Hill, Boston. doi: 10.1036/0070116822.##
[36]. Viehland, L.A., Mason, E.A., Morrison, W.F., Flannery, M.R., (1975). Tables of transport collision integrals for (n, 6, 4) ion-neutral potentials, Atomic Data and Nuclear Data Tables, 16 (1975) 495-514. doi.org/10.1016/0092-640X(75)90022-4.##
[37]. O›Hara, H., Smith, F.J., (1970). The efficient calculation of the transport properties of a dilute gas to a pre scribed accuracy, Journal of Computational Physics, 5 (1970) 328-344. doi.org/10.1016/0021-9991(70)90065-3.##
[38]. O›Hara, H., Smith, F.J., (1971). Transport collision integrals for a dilute gas, Computer Physics Communications, 2 (1971) 47-54. doi.org/10.1016/0010-4655(71)90014-2.##
[39]. Dymond, J.H., Marsh, K.N., Wilhoit, R.C., Wong, K.C., (2003). Virial Coefficients of Pure Gases and Mixtures, Landolt-Börnstein, Berlin, Germany.##
[40]. Viehland, L.A., Chang, Y., (2010). Transport cross sections for collisions between particles, Computer Physics Communications, 181 (2010) 1687-1696. doi.org/10.1016/j.cpc.2010.06.008.##
[41]. Lucas, K., (1980). Phase Equilibria and Fluid Properties in the Chemical Industry, Dechema, Frankfurt.##
[42]. Chung, T.H., Ajlan, M., Lee, L.L., Starling, K.E., (1988). Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Industrial & Engineering Chemistry Research, 27 (1988) 671-679. doi.org/10.1021/ie00076a024.##
[43]. Chung, T.H., Lee, L.L., Starling, K.E., (1984). Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity, Industrial & Engineering Chemistry Fundamentals, 23 (1984) 8-13. doi.org/10.1021/i100013a002.##
[44]. Huber, M.L., (2007). Thermophysical Properties of Hydrocarbon Mixtures Database (SUPERTRAPP), NIST Standard Reference Database in, U.S. Department of Commerce, NIST, Colorado.##
[45]. Kestin, J., Ro, S.T., Wakeham, W.A., (1983). The transport properties of binary mixtures of hydrogen with CO, CO2 and CH4, Physica A: Statistical Mechanics and its Applications, 119 (1983) 615-638. doi.org/10.1016/0378-4371(83)90113-9.##
[46]. Vugts, H.F., Boerboom, A.J.H., Los, J., (1970). Diffusion coefficients of isotopic mixtures of CO and N2, Physica, 50 (1970) 593-605. doi.org/10.1016/0031-8914(70)90216-8.##
[47]. Vargaftik, N., Vinogradov, Y.K., Yargin, V.S., (1996). Handbook of Physical Properties of Liquids and Gases, 3th ed., Begell House, Inc., New York. doi:10.1615/978-1-56700-063-4.0.##
[48]. Gavril, D., Atta, K.R., Karaiskakis, G., (2004). Determination of collision cross-sectional parameters from experimentally measured gas diffusion coefficients, Fluid Phase Equilibria, 218 (2004) 177-188. doi.org/10.1016/j.fluid.2003.12.010.##
[49]. Madan, M., (1953). Transport properties of some gas mixtures, Proc. Nat. Inst. Sci. India, 19 (1953) 713-719.##
[50]. Kielich, S., (1962). Second virial coefficients for unlike non-dipolar molecules, Physica, 28 (1962) 511-520. doi.org/10.1016/0031-8914(62)90038-1.##
[51]. McQuarrie, D.A., (1976). Statistical Mechanics, Harper & Row, Publishers, Inc., New York.##
[52]. Pople, J.A., (1954). The Statistical Mechanics of Assemblies of Axially Symmetric Molecules. II. Second Virial Coefficients, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 221 (1954) 508-516. doi.org/10.1098/rspa.1954.0045.##
[53]. Pople, J.A., (1954). The Statistical Mechanics of Assemblies of Axially Symmetric Molecules. I. General Theory, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 221 (1954) 498-507. doi.org/10.1098/rspa.1954.0044.##
[54]. Buckingham, A.D., Pople, J.A., (1955). The statistical mechanics of imperfect polar gases. Part 1.-Second virial coefficients, Transactions of the Faraday Society, 51 (1955) 1173-1179. doi.org/10.1039/TF9555101173.##
[55]. Kielich, S., (1965). The equation of state of multipolar gases, Physica, 31 (1965) 444-460. doi.org/10.1016/0031-8914(65)90072-8.##
[56]. Boushehri, A., Mason, E.A., Kestin, J., (1986). Improved tables for the calculation of nonspherical contributions to second virial coefficients, International Journal of Thermophysics, 7 (1986) 1115-1133.##
[57]. Maghari, A., Moosavi, H., (1997). Modified numerical tables for the calculation of non-spherical contribution to second virial coefficients and the correlation equations of state for CO2, CS2, and C6H6, Journal of Sciences, Islamic Republic of Iran, 8 (1997) 108-116.##
[58]. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., (1964). Molecular Theory of Gases and Liquids, 2nd ed., Wiley, New York.##
[59]. Mitroy, J., Bromley, M.W.J., (2005). Higher-order Cn dispersion coefficients for hydrogen, Physical Review A, 71 (2005) 032709. DOI: https://doi.org/10.1103/PhysRevA.71.032709.##
[60]. Elias, E., Hoang, N., Sommer, J., Schramm, B., (1986). Die zweiten Virialkoeffizienten von Helium-Gasmischungen im Bereich unterhalb Zimmertemperatur, Berichte der Bunsengesellschaft für physikalische Chemie, 90 (1986) 342-351. doi.org/10.1002/bbpc.19860900406.##