[1]. Garrouch, A. A., Malallah, A. H., & Al-Enizy, M. M. (2006, September). An empirical model for predicting crude sludging potential caused by acidizing. In SPE Annual Technical Conference and Exhibition? (pp. SPE-102129). SPE. doi.org/10.2118/102129-MS. ##
[2]. عزیزی، ع. و عزیزی، ع. (1400) مروری بر روشهای اسیدکاری مخازن هیدروکربوری، انواع اسیدهای مورد استفاده دراسیدکاری و پارامترهای مؤثر برآن. ششمین همایش بینالمللی نفت، گاز، پتروشیمی و HSE. همدان. ##
[3]. Leal-Calderon, F., Schmitt, V., & Bibette J. Emulsion science: basic principles. Springer Science & Business Media; 2007. ##
[4]. Schramm, L. L. (1992). Fundamentals and applications in the petroleum Industry. Adv. Chem, 231, 3-24. ##
[5]. Sjöblom J. Encyclopedic handbook of emulsion technology. CRC Press; 2001. ##
[6]. Chen, G., & Tao, D. (2005). An experimental study of stability of oil–water emulsion. Fuel processing technology, 86(5), 499-508. doi.org/10.1016/j.fuproc.2004.03.010. ##
[7]. Fingas, M. (1996). Water-in-oil emulsion formation: a review of physics and mathematical modelling. Oceanographic Literature Review, 4(43), 416. doi.org/10.1016/1353-2561(95)94483-Z. ##
[8]. Lim, J. S., Wong, S. F., Law, M. C., Samyudia, Y., & Dol, S. S. (2015). A review on the effects of emulsions on flow behaviours and common factors affecting the stability of emulsions. Journal of Applied Sciences, 15(2), 167-172. ##
[9]. Fingas, M., Fieldhouse, B., Bobra, M., & Tennyson, E. (1993). The physics and chemistry of emulsions. Environment Canada and Consultchem, Ottawa, Canada and US Minerals Management Service, Herndon, Virginia. ##
[10].Fingas, M., & Fieldhouse, B. (2003). Studies of the formation process of water-in-oil emulsions. Marine pollution bulletin, 47(9-12), 369-396. doi.org/10.1016/S0025-326X(03)00212-1. ##
[11]. حدادی، م. و مؤمنی میانایی، ا. (1394) عملیات اسیدکاری سازندهای کربناته و مطالعه موردی نتایج اسیدکاری یکی از چاه های نفت واقع در یکی از میادین حوزه نفت مرکزی. چهارمین همایش علمی مخازن هیدروکربوری و صنایع بالادستی علوم و صنایع وابسته. تهران..##
[12]. حسینزاده هلاله، ا. و چنگلوایی، ع. (1395). بررسی تأثیر بهینه اسیدکاری ماتریسی در انگیزش مخازن کربناته سازند داریان میدان نفتی اهواز. مهندسی شیمی ایران، 15(84): 101–90. ##
[13]. Coulter, A. W. J., Hendrickson, A. R., & Martinez, S. J. (1987). Acidizing. Petroleum Engineering Handbook. Society of Petroleum Engineers. ##
[14]. Schechter, R. S. (1992). Oil Well Stimulation, Prentice-Hall, Inc. A Simon & Schuster Co., Englewood Cliffs, New Jersey. ##
[15]. بصیر، س. م. و شهبازی، خ. (1396). روشهای بهینهسازی و افزایش بازده اسیدکاری در مخازن هیدروکربنی. اکتشاف و تولید نفت و گاز. 149 :60–6. ##
[16]. Ratnakar, R. R., Kalia, N., & Balakotaiah, V. (2013). Modeling, analysis and simulation of wormhole formation in carbonate rocks with in situ cross-linked acids. Chemical Engineering Science, 90, 179-199. doi.org/10.1016/j.ces.2012.12.019. ##
[17]. Shakouri, S., & Mohammadzadeh-Shirazi, M. (2025). Machine learning approaches for assessing stability in acid-crude oil emulsions: Application to mitigate formation damage. Petroleum Science, 22(2), 894-908. doi.org/10.1016/j.petsci.2024.09.013. ##
[18]. Yang, F., Tchoukov, P., Pensini, E., Dabros, T., Czarnecki, J., Masliyah, J., & Xu, Z. (2014). Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 1: interfacial behaviors. Energy & Fuels, 28(11), 6897-6904. doi.org/10.1021/ef501826g. ##
[19]. Yarranton, H. W., Hussein, H., & Masliyah, J. H. (2000). Water-in-hydrocarbon emulsions stabilized by asphaltenes at low concentrations. Journal of Colloid and Interface Science, 228(1): 52-63. doi.org/10.1006/jcis.2000.6938.##
[20]. Speight, J. G. (2004). Petroleum Asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum. Oil & Gas Science and Technology, 59(5), 467-477. doi.org/10.2516/ogst:2004032. ##
[21]. Kroschwitz, J. I., Howe-Grant, M., Kirk, R. E., & Othmer, D. F. (1996). Encyclopedia of chemical technology. John Wiley & Sons. ##
[22]. Houchin, L. R., Dunlap, D. D., Arnold, B. D., & Domke, K. M. (1990, February). The occurrence and control of acid-induced asphaltene sludge. In SPE International Conference and Exhibition on Formation Damage Control (pp. SPE-19410). SPE. doi.org/10.2118/19410-MS. ##
[23]. Abbasi, A., Malayeri, M. R., & Shirazi, M. M. (2023). Stability of spent HCl acid-crude oil emulsion. Journal of Molecular Liquids, 383, 122116. doi.org/10.1016/j.molliq.2023.122116. ##
[24]. Abbasi A, Mohammadzadeh-Shirazi M, Malayeri MR, Malhani H. Potential Drawbacks of Chemical Additives during Acidizing. In: The 12th International Chemical Engineering Congress & Exhibition (IChEC 2023). Tehran; 2023. ##
[25]. Abbasi, A., Mohammadzadeh-Shirazi, M., & Malayeri, M. R. (2024). Functionality of chemical additives and experimental conditions during formation of acid-induced emulsion and sludge. Journal of Molecular Liquids, 398, 124257. doi.org/10.1016/j.molliq.2024.124257. ##
[26]. Shirazi, M. M., Ayatollahi, S., & Ghotbi, C. (2019). Damage evaluation of acid-oil emulsion and asphaltic sludge formation caused by acidizing of asphaltenic oil reservoir. Journal of Petroleum Science and Engineering, 174, 880-890. doi.org/10.1016/j.petrol.2018.11.051. ##
[27]. Kokal, S., & Al-Dokhi, M. (2008). Case studies of emulsion behavior at reservoir conditions. SPE Production & Operations, 23(03), 312-317. doi.org/10.2118/105534-PA. ##
[28]. Daghighi-Rouchi, A., Abbasi, A., Malayeri, M. R., & Mohammadzadeh-Shirazi, M. (2025). Role of asphaltene and its sub-fractions in the stability of acid-oil emulsion. Fuel, 380, 133157. doi.org/10.1016/j.fuel.2024.133157. ##
[29]. Velayati, A., & Nouri, A. (2021). Role of asphaltene in stability of water-in-oil model emulsions: The effects of oil composition and size of the aggregates and droplets. Energy & Fuels, 35(7), 5941-5954. doi.org/10.1021/acs.energyfuels.1c00183. ##
[30]. Tchoukov, P., Yang, F., Xu, Z., Dabros, T., Czarnecki, J., & Sjoblom, J. (2014). Role of asphaltenes in stabilizing thin liquid emulsion films. Langmuir, 30(11), 3024-3033. doi.org/10.1021/la404825g. ##
[31]. Rocha, J. A., Baydak, E. N., & Yarranton, H. W. (2018). What fraction of the asphaltenes stabilizes water-in-bitumen emulsions?. Energy & Fuels, 32(2), 1440-1450. doi.org/10.1021/acs.energyfuels.7b03532. ##
[32]. Spiecker, P. M., & Kilpatrick, P. K. (2004). Interfacial rheology of petroleum asphaltenes at the oil− water interface. Langmuir, 20(10), 4022-4032. doi.org/10.1021/la0356351. ##
[33]. Alves, C. A., Yanes, J. F. R., Feitosa, F. X., & de Sant’Ana, H. B. (2022). Influence of asphaltenes and resins on water/model oil interfacial tension and emulsion behavior: Comparison of extracted fractions from crude oils with different asphaltene stability. Journal of Petroleum Science and Engineering, 208, 109268. doi.org/10.1016/j.petrol.2021.109268. ##
[34]. Urdahl, O., Brekke, T., & Sjöblom, J. (1992). 13C nmr and multivariate statistical analysis of adsorbed surface-active crude oil fractions and the corresponding crude oils. Fuel, 71(7), 739-746. doi.org/10.1016/0016-2361(92)90122-5. ##
[35]. Sjöblom, J., Mingyuan, L., Christy, A. A., & Gu, T. (1992). Water-in-crude-oil emulsions from the Norwegian continental shelf 7. Interfacial pressure and emulsion stability. Colloids and surfaces, 66(1), 55-62. doi.org/10.1016/0166-6622(92)80120-Q. ##
[36]. Sjöblom, J., Urdahl, O., Børve, K. C. N., Mingyuan, L., Saeten, J. O., Christy, A. A., & Gu, T. (1992). Stabilization and destabilization of water-in-crude oil emulsions from the Norwegian continental shelf. Correlation with model systems. Advances in colloid and Interface Science, 41, 241-271. doi.org/10.1016/0001-8686(92)80014-O. ##
[37]. Ebeltoft, H., Børve, K. N., Sjöblom, J., & Stenius, P. (2007). Interactions between poly (styrene-allylalcohol) monolayers and surfactants. Correlations to water-in-crude oil emulsion stability. In Advances in Colloid Structures (pp. 131-139). Darmstadt: Steinkopff. ##
[38]. Mohammed, S. A., & Maan, S. D. (2016). The effect of asphaltene on the stability of Iraqi water in crude oil emulsions. Iraqi Journal of Chemical and Petroleum Engineering, 17(2), 37-45. doi.org/10.31699/IJCPE.2016.2.5. ##
[39]. Liu, D., Li, C., Yang, F., Sun, G., You, J., & Cui, K. (2019). Synergetic effect of resins and asphaltenes on water/oil interfacial properties and emulsion stability. Fuel, 252, 581-588. doi.org/10.1016/j.fuel.2019.04.159. ##
[40]. عباسی، ا. (1401). بررسی پایداری امولسیون اسید-نفت خام تحت تأثیر آسفالتین. دانشگاه شیراز، 1401. ##
[41]. Førdedal, H., Schildberg, Y., Sjöblom, J., & Volle, J. L. (1996). Crude oil emulsions in high electric fields as studied by dielectric spectroscopy. Influence of interaction between commercial and indigenous surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 106(1), 33-47. doi.org/10.1016/0927-7757(95)03354-. ##
[42]. Szumała, P., & Luty, N. (2016). Effect of different crystalline structures on W/O and O/W/O wax emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499, 131-140. doi.org/10.1016/j.colsurfa.2016.04.022. ##
[43]. Rousseau, D., & Hodge, S. M. (2005). Stabilization of water-in-oil emulsions with continuous phase crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 260(1-3), 229-237. doi.org/10.1016/j.colsurfa.2005.02.035. ##
[44]. Haj-shafiei, S., Ghosh, S., & Rousseau, D. (2013). Kinetic stability and rheology of wax-stabilized water-in-oil emulsions at different water cuts. Journal of Colloid and Interface science, 410, 11-20. doi.org/10.1016/j.jcis.2013.06.047. ##
[45]. Cisneros-Dévora, R., Cerón-Camacho, R., Soto-Castruita, E., Pérez-Alvarez, M., Ramírez-Pérez, J.F., Oviedo-Roa, R., Servín-Nájera, A.G., Buenrostro-Gonzalez, E., Martínez-Magadán, J.M. and Zamudio-Rivera, L.S. (2019). A theoretical study of crude oil emulsions stability due to supramolecular assemblies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 567, 121-127. doi.org/10.1016/j.colsurfa.2019.01.045.##
[46]. Abbasi, A., & Malayeri, M. R. (2023). Impact of crude oil properties on stability of HCl-crude oil emulsion using XDLVO theory. Fuel, 338, 127315. doi.org/10.1016/j.fuel.2022.127315. ##
[47]. Kazemzadeh, Y., Ismail, I., Rezvani, H., Sharifi, M., & Riazi, M. (2019). Experimental investigation of stability of water in oil emulsions at reservoir conditions: Effect of ion type, ion concentration, and system pressure. Fuel, 243, 15-27. doi.org/10.1016/j.fuel.2019.01.071. ##
[48]. Subramanian, D., May, N., & Firoozabadi, A. (2017). Functional molecules and the stability of water-in-crude oil emulsions. Energy & Fuels, 31(9), 8967-8977. doi.org/10.1021/acs.energyfuels.7b01039. ##
[49]. AlMubarak, T., AlKhaldi, M., AlMubarak, M., Rafie, M., Al-Ibrahim, H., & AlBokhari, N. (2015, April). Investigation of acid-induced emulsion and asphaltene precipitation in low permeability carbonate reservoirs. In SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition (pp. SPE-178034). SPE. doi.org/10.2118/178034-MS.
[50]. Strassner, J. E. (1968). Effect of pH on interfacial films and stability of crude oil-water emulsions. Journal of Petroleum Technology, 20(03), 303-312. doi.org/10.2118/1939-PA. ##
[51]. Moore, E. W., Crowe, C. W., & Hendrickson, A. R. (1965). Formation, effect and prevention of asphaltene sludges during stimulation treatments. Journal of Petroleum Technology, 17(09), 1023-1028. doi.org/10.2118/1163-PA. ##
[52]. Abbasi, A., & Malayeri, M. R. (2022). Stability of acid in crude oil emulsion based on interaction energies during well stimulation using HCl acid. Journal of Petroleum Science and Engineering, 212, 110317. doi.org/10.1016/j.petrol.2022.110317. ##
[53]. شیخی بوجانی، ف.، رمضانزاده، ا. و لطفی، م. (1400). تعیین نرخ مناسب تزریق اسید در سازندهای کربناته بهمنظور افزایش تراوایی. پژوهش نفت. 31(2):124–45، doi: 10.22078/pr.2021.4175.2893. ##
[54]. حیدری، س.، رضویفر، م.، روزبهانی، ع. ر. و سجادیان، م. ح. (1399) روشهای بهبود تولید در مخازن نفتی. زرنوشت..##
[55]. Guo B, Lyons, C. W, Ghalambor A. Petroleum Production Engineering. Elsevier Inc.; 2007. ##
[56]. Podoprigora, D. G., Korobov, G. Y., & Bondarenko, A. V. (2019). Acid stimulation technology for wells drilled the low-permeable high-temperature terrigenous reservoirs with high carbonate content. International Journal of Civil Engineering and Technology, 10(1), 2680-2696.ISSN Print: 0976-6308 and ISSN Online: 0976-6316##
[57]. Zhao, L., Chen, X., Zou, H., Liu, P., Liang, C., Zhang, N., Li, N., Luo, Z. and Du, J., 2020. A review of diverting agents for reservoir stimulation. Journal of Petroleum Science and Engineering, 187, 106734. doi.org/10.1016/j.petrol.2019.106734. ##
[58]. Alhamad, L., Alrashed, A., Al Munif, E., & Miskimins, J. (2020). Organic acids for stimulation purposes: a review. SPE Production & Operations, 35(04), 952-978. doi.org/10.2118/199291-PA.##
[59]. Haney, B. L., & Cuthill, D. A. (1997, February). The application of an optimized propellant stimulation technique in heavy oil wells. In SPE International Thermal Operations and Heavy Oil Symposium (pp. SPE-37531). SPE. doi.org/10.2118/37531-MS. ##
[60]. Coulter, A. W., & Gougler, P. D. (1984). Field tests indicate tubing is main source of iron precipitation in the wellbore. Oil Gas J.;(United States), 82(36). ##
[61]. Ganeeva, Y. M., Yusupova, T. N., Barskaya, E. E., Valiullova, A. K., Okhotnikova, E. S., Morozov, V. I., & Davletshina, L. F. (2020). The composition of acid/oil interface in acid oil emulsions. Petroleum Science, 17(5), 1345-1355. ##
[62]. عباسی، ا.، ملایری، محمدرضا, و محمدزاده شیرازی، میثم. (1401). تشخیص آزمایشگاهی حساسیت تشکیل امولسیون اسید ـ نفت خام نسبت به شرایط اسید تزریق شده به سازند. اکتشاف و تولید نفت و گاز. 205:32–7. ##
[63]. Badger GM. The Chemistry of Hetercycli$ Compounds. New York,: Academic Press; 1961. ##
[64]. Dwyer FR, Mellor DP. Chelating Agents an~ Metal Chelates. New York,: Academic Press; 1964. ##
[65]. Jacobs, I. C. (1989, February). Chemical systems for the control of asphaltene sludge during oilwell acidizing treatments. In SPE International Conference on Oilfield Chemistry? (pp. SPE-18475). SPE. doi.org/10.2118/18475-MS. ##
[66]. Rietjens, M. (1997, June). Sense and non-sense about acid-induced sludge. In SPE European Formation Damage Conference and Exhibition (pp. SPE-38163). SPE. ##
[67]. Rietjens, M., & Nieuwpoort, M. (1999, May). Acid-sludge: How small particles can make a big impact. In SPE European Formation Damage Conference and Exhibition (pp. SPE-54727). SPE. doi.org/10.2118/54727-MS. ##
[68]. Rietjens, M., & Nieuwpoort, M. (2001). An analysis of crude oil–acid reaction products by size-exclusion chromatography. Fuel, 80(1), 33-40. doi.org/10.1016/S0016-2361(00)00073-9. ##
[69]. Rietjens, M., & van Haasterecht, M. (2003). Phase transport of HCl, HFeCl4, water, and crude oil components in acid–crude oil systems. Journal of Colloid and interface Science, 268(2), 489-500. doi.org/10.1016/j.jcis.2003.08.030. ##
[70]. Wong, T. C., Hwang, R. J., Beaty, D. W., Dolan, J. D., McCarty, R. A., & Franzen, A. L. (1997). Acid-Sludge characterization and remediation improve well productivity and save costs in the permian basin. SPE Production & Facilities, 12(01), 51-58. doi.org/10.2118/35193-PA. ##
[71]. Medeiros Jr, F., & Trevisan, O. V. (2006). Thermal analysis in matrix acidization. Journal of Petroleum Science and Engineering, 51(1-2), 85-96. doi.org/10.1016/j.petrol.2005.11.011. ##
[72]. Williams, B. B. (1979). Acidizing Fundamentals Monograph. SPE. Richardson TX, 6.##
[73]. پایدار، ک. و منطقیان، م. (1400). مروری بر کاهش آسیب سازند مخازن کربناته با روش اسیدکاری. ششمین همایش بینالمللی نفت، گاز، پتروشیمی و HSE. همدان.. ##
[74]. Assem, A. I., Kumar, H. T., Nasr-El-Din, H. A., & De Wolf, C. A. (2019). Location and magnitude of formation damage due to iron precipitation during acidizing carbonate rocks. Journal of Petroleum Science and Engineering, 179, 337-354. doi.org/10.1016/j.petrol.2019.04.073. ##
[75]. Fogang, L. T., Kamal, M. S., & Sultan, A. S. (2020). Viscosity-reducing agents (breakers) for viscoelastic surfactant gels for well stimulation. Energy & Fuels, 34(12), 15686-15700. doi.org/10.1021/acs.energyfuels.0c03410. ##
[76]. Hirschberg, A., deJong, L. N., Schipper, B. A., & Meijer, J. G. (1984). Influence of temperature and pressure on asphaltene flocculation. Society of Petroleum Engineers Journal, 24(03), 283-293. doi.org/10.2118/11202-PA. ##
[77]. Leong, V. H., & Ben Mahmud, H. (2019). A preliminary screening and characterization of suitable acids for sandstone matrix acidizing technique: a comprehensive review. Journal of Petroleum Exploration and Production Technology, 9(1), 753-778. ##
[78]. زویداویانپور، م.، شادیزاده، س. ر. و ممبینی، س. (1389). بررسى و بهبود عملیات انگیزش چاه با اسیدکارى ماتریکسى در یک مخزن نفتى جنوب ایران. پژوهش نفت. 62:94–106. ##
[79]. Migahed, M. A., Zaki, E. G., & Shaban, M. M. (2016). Corrosion control in the tubing steel of oil wells during matrix acidizing operations. RSC advances, 6(75), 71384-71396. DOI: 10.1039/C6RA12835A. ##
[80]. سنندجی، ف.، وزیری، پ. و نخعی، ع. (1399). بررسی روشهای اسیدکاری مخازن کربناته ایران. دهمینکنفرانس ملی پژوهشهای نوین در علوم و مهندسی شیمی. بابل. . ##
[81]. خامهچی، ا.، مهدیانی، م. ر. و نوروزی، م. (1392). مدلسازی عملیات فرازآوری با گاز با استفاده از برنامهریزی ژنتیک برای پیشبینی نرخ تولید نفت یک چاه. اکتشاف و تولید نفت و گاز. 107:60–4. ##
[82]. دودمان کوشکی، م. ر. و امامزاده، س. ا. (1398). بررسی و شبیهسازی تأثیر اسیدکاری بر روی افزایش تولید مخزن بنگستان با استفاده از حلال دوگانه. نخبگان علوم و مهندسی. 4(2):198–210. ##
[83]. Bourdarot G. Well testing: interpretation methods. Editions Technip; 1998. ##
[84]. Mirkhoshhal, S. M., Mahani, H., Ayatollahi, S., & Shirazi, M. M. (2021). Pore-scale insights into sludge formation damage during acid stimulation and its underlying mechanisms. Journal of Petroleum Science and Engineering, 196, 107679. doi.org/10.1016/j.petrol.2020.107679. ##
[85]. Kalhori, P., Abbasi, A., Malayeri, M. R., & Shirazi, M. M. (2022). Impact of crude oil components on acid sludge formation during well acidizing. Journal of Petroleum Science and Engineering, 215, 110698. doi.org/10.1016/j.petrol.2022.110698. ##
[86]. Pourakaberian, A., Ayatollahi, S., Shirazi, M. M., Ghotbi, C., & Sisakhti, H. (2021). A systematic study of asphaltic sludge and emulsion formation damage during acidizing process: Experimental and modeling approach. Journal of Petroleum Science and Engineering, 207, 109073. doi.org/10.1016/j.petrol.2021.109073. ##
[87]. Shakouri, S., & Mohammadzadeh-Shirazi, M. (2023). Modeling of asphaltic sludge formation during acidizing process of oil well reservoir using machine learning methods. Energy, 285, 129433. doi.org/10.1016/j.energy.2023.129433. ##
[88]. Karimi, M., Shirazi, M. M., & Ayatollahi, S. (2018). Investigating the effects of rock and fluid properties in Iranian carbonate matrix acidizing during pre-flush stage. Journal of Petroleum Science and Engineering, 166, 121-130. doi.org/10.1016/j.petrol.2018.03.002. ##
[89]. Houchin, L. R., & Hudson, L. M. (1986, February). The prediction, evaluation, and treatment of formation damage caused by organic deposition. In SPE International Conference and Exhibition on Formation Damage Control (pp. SPE-14818). SPE. doi.org/10.2118/14818-MS. ##
[90]. Al-Anazi, H. A., Nasr-El-Din, H. A., Hashem, M. K., & Hopkins, J. A. (2000, June). Matrix acidizing of water injectors in a sandstone field in Saudi Arabia: a case study. In SPE Western Regional Meeting (pp. SPE-62825). SPE. doi.org/10.2118/62825-MS. ##
[91]. Shadizadeh, S. R., & Zoveidavianpoor, M. (2008). Environmental impacts of xylene as stimulation fluid in iranian oil and gas wells. In Technical Seminar on Oil, Gas and Environment. Shiraz,, Iran: Shiraz University. ##
[92]. خـدری ، س.، صمدی، ف.، اسـماعیلزاده، ف.، مـولا، د. و بخشـی زیـدانلو، ن. (1392). طراحـی فرآینـدهای اسـیدکـاری مـاتریکس در مخـازن نفتی کربناته. اولین همایش ملی فنآوریهای نوین در شیمی و مهندسی شیمی. تهران. ##
[93]. Crowe C, Masmonteil J, Thomas R. Trends in matrix acidizing. Oilf Rev. 1992;4(4):24–40. ##
[94]. Schramm, L. L., & Schramm, L. L. (Eds.). (2000). Surfactants: fundamentals and applications in the petroleum industry. Cambridge university press. ##
[95]. دانشوند، ب.، زریبافان، ع. و خدابنده، ف. (1394). مقایسه VES با خواص رئولوژیکی بهبود یافته DiVES-350 با VES های متداول. چهارمین همایش علمی مخازن هیدروکربوری و صنایع بالادستی علوم و صنایع وابسته. تهران.##
[96]. دانشوند، ب.، زریبافان، ع. و خدابنده، ف. (1394). یک منحرفکننده اسیدکاری جدید با خصوصیات بهبود یافته به نام DiVES-350. چهارمین کنگره مهندسی نفت، پژوهشگاه صنعت نفت. تهران..##
[97]. دانشوند، ب.، زریبافان، ع. و خدابنده، ف. (1394). بهبود انگیزش چاه های نفت و گاز با تکنولوژی نوین VES. همایش علمی مهندسی مخازن هیدروکربوری و صنایع بالادستی. تهران; . ##
[98]. Nasr-El-Din, H. A., Samuel, E., & Samuel, M. (2003, October). Application of a new class of surfactants in stimulation treatments. In SPE International Improved Oil Recovery Conference in Asia Pacific (pp. SPE-84898). SPE. doi.org/10.2118/84898-MS. ##
[99]. Economides, M. J., & Nolte, K. G. (2000). Reservoir stimulation (Vol. 18). New York: Wiley. ##
[100]. Ma, J., Yang, Y., Li, X., Sui, H., & He, L. (2021). Mechanisms on the stability and instability of water-in-oil emulsion stabilized by interfacially active asphaltenes: Role of hydrogen bonding reconstructing. Fuel, 297, 120763. doi.org/10.1016/j.fuel.2021.120763. ##
[101]. دانشوند، ب.، بدری، ف.، خدابنده، ف. و زریبافان، ع. (1394). تست های آزمایشگاهی کنترل کیفیت افزایههای ضد لجن و ضد امولسیون بهمنظور جلوگیری از آسیب مجدد و بهبود عملیات اسیدکاری. سومین کنفرانس بینالمللی نفت، گاز و پتروشیمی. تهران. ##
[102]. Asaadian, H., Ahmadi, P., Khormizi, M. Z., Mohammadi, S., Soulgani, B. S., Baghersaei, S., & Mokhtari, B. (2022). Prevention of acid-induced sludge formation using an environmentally–friendly bio-based nonionic surfactant. Journal of Petroleum Science and Engineering, 218, 111009. doi.org/10.1016/j.petrol.2022.111009. ##
[103]. فدایی، ش.، محمدزاده شیرازی، م.، پوراکابریان، آ. و آیتاللهی، ش. (1400). بررسی تأثیر افزایههای اسیدی ممانعت کننده در جلوگیری از تشکیل لجن آسفالتینی. هفدهمین کنگره ملی مهندسی شیمی ایران. مشهد..##
[104]. فدایی، ش.، محمدزاده شیرازی، م. و آیتاللهی، ش. (1400). بررسی آزمایشگاهی ممانعت از تشکیل امولسیون فیلم سخت در اثر تماس اسید-نفت خام در عملیات اسید کاری چاه های نفتی. هفدهمین کنگره ملی مهندسی شیمی. 7. ##
[105]. Delorey, J. A., & Taylor, R. S. (1985, June). Recent studies into iron/surfactant/sludge interactions in acidizing. In PETSOC Annual Technical Meeting (pp. PETSOC-85). PETSOC. doi.org/10.2118/85-36-38. ##
[106]. بهمئی، م. (1400). بررسی آزمایشگاهی تأثیر افزایه ضد لجن پایه پلیمری بر نفت و بهینهسازی آن در عملیات اسیدکاری در دو میدان نفتی در ایران. پنجمین کنفرانس علوم و فناوری های شیمی کاربردی: نفت، گاز و پتروشیمی. تهران. ##
[107]. Buijse, M., de Boer, P., Breukel, B., & Burgos, G. (2004). Organic acids in carbonate acidizing. SPE production & facilities, 19(03), 128-134. doi.org/10.2118/82211-PA. ##
[108]. Legemah, M.U., Gomaa, A., Bilden, D., Lowe, C., Boles, J., Qu, Q., Sun, H., Wang, X. and Li, L., (2015). March. Sequential injection process enhances acidizing treatment of high-temperature wells. In SPE Oklahoma City Oil and Gas Symposium/Production and Operations Symposium (pp. SPE-173626). SPE. doi.org/10.2118/173626-MS. ##
[109]. Chaberek, S., & Martell, A. E. (1959). Organic sequestering agents: a discussion of the chemical behavior and applications of metal chelate compounds in aqueous systems. New York: Wiley. ##
[110]. ساداتی سرخی، س. عرفان. (1397). اسیدهای آلی در اسیدکاری کربناتی. سومین همایش بینالمللی نفت، گاز، پتروشیمی و HSE. همدان.##
[111]. Reyes, E.A., Rispler, K., Davis, J., Stimatze, R., Ouedraogo, M., Beuterbaugh, A., LaBlanc, A., Williams, W., Rees, S., Bungo, F. and Kintomba, P., (2015), September. Acidizing of High Temperature and Highly Sensitive Multilayered Carbonate Well with Aminopolycarboxylic Acid Low-pH Fluid: Field Implementation and Laboratory Validation. In SPE North Africa Technical Conference and Exhibition (p. D021S011R001). SPE. doi.org/10.2118/175839-MS.##
[112]. Rabie, A. I., Gomaa, A. M., & Nasr-El-Din, H. A. (2011, March). HCl-formic in-situ gelled acid for carbonate acidizing: core flood and reaction rate study. In SPE Oklahoma City Oil and Gas Symposium/Production and Operations Symposium (pp. SPE-140138). SPE. doi.org/10.2118/140138-MS. ##
[113]. Crowe CW. Acidizing composition. U.S. Patent: 3779916, 1973. ##
[114]. Fast CR, Rixe FH, Duffield Jr EL. Retarded acid emulsion. US Patenet: 3681240, 1972. ##
[115]. Knight DD. Treatment of wells. U.S. Patent: 3353603, 1967. ##
[116]. Aldakkan, B., Gomaa, A. M., Cairns, A. J., Sayed, M., & Alnoaimi, K. (2018, April). Low viscosity retarded acid system: A novel alternative to emulsified acids. In SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition (pp. SPE-192175). SPE. doi.org/10.2118/192175-MS.##
[117]. Fredd, C. N., & Fogler, H. S. (1998). The kinetics of calcite dissolution in acetic acid solutions. Chemical engineering science, 53(22), 3863-3874. doi.org/10.1016/S0009-2509(98)00192-4. ##
[118]. Bergstrom, J. M., & Miller, B. D. (1975, September). Results of acid-in-oil emulsion stimulations of carbonate formations. In SPE Annual Technical Conference and Exhibition? (pp. SPE-5648). SPE. doi.org/10.2118/5648-MS. ##
[119]. Crowe, C. W., & Miller, B. D. (1974, May). New, Low-Viscosity Acid-in-Oil Emulsions Provide High Degree of Retardation at High Temperature. In SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium (pp. SPE-4937). SPE. doi.org/10.2118/4937-MS. ##
[120]. Hoefner, M. L., & Fogler, H. S. (1987). Role of acid diffusion in matrix acidizing of carbonates. Journal of petroleum technology, 39(02), 203-208. doi.org/10.2118/13564-PA. ##
[121]. Knox, J. A., & Lasater, R. M. (1964, October). A New Concept in Acidizing Utilizing Chemical Retardation. In SPE Annual Technical Conference and Exhibition? (pp. SPE-975). SPE. doi.org/10.2118/975-MS. ##
[122]. Sidaoui, Z., & Sultan, A. S. (2016, November). Formulating a stable emulsified acid at high temperatures: Stability and rheology study. In International Petroleum Technology Conference (p. D012S060R001). IPTC. doi.org/10.2523/IPTC-19012-MS. ##
[123]. Sidaoui, Z., Sultan, A. S., & Brady, D. (2017, April). A novel approach to formulation of emulsified acid using waste oil. In SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition (p. D023S002R001). SPE. doi.org/10.2118/188116-MS. ##
[124]. Cairns, A. J., Al-Muntasheri, G. A., Sayed, M., Fu, L., & Giannelis, E. P. (2016, February). Targeting enhanced production through deep carbonate stimulation: Stabilized acid emulsions. In SPE International Conference and Exhibition on Formation Damage Control (p. D011S006R003). SPE. doi.org/10.2118/178967-MS. ##
[125]. Adewunmi, A. A., Solling, T., Sultan, A. S., & Saikia, T. (2022). Emulsified acid systems for oil well stimulation: A review. Journal of Petroleum Science and Engineering, 208, 109569. doi.org/10.1016/j.petrol.2021.109569. ##
[126]. Zakaria, A. S., Sayed, M. A., & Nasr-El-Din, H. A. (2012, December). Propagation of emulsified acids in vuggy dolomitic rocks. In SPE Kuwait international petroleum conference and exhibition (pp. SPE-163288). SPE. doi.org/10.2118/163288-MS. ##
[127]. Sayed, M., Nasr-El-Din, H. A., & Nasrabadi, H. (2013). Reaction of emulsified acids with dolomite. Journal of Canadian Petroleum Technology, 52(03), 164-175. doi.org/10.2118/151815-PA. ##
[128]. صیادنژاد، م. ع.، اسکندری، م. م.، سلیمانی جمارانی، م. و سلیمانی، م. (1386). بررسی اثر افزایه کندکار اسید امولسیونی بر روی سنگ کربناته گروه بنگستان. پژوهش نفت. 56(1):72–8. ##
[129]. Norlee, A., Shi, T. I., Mahmud, H. K. B., Yew, H. F. C., & Shafiq, M. U. (2019, April). Investigating the effectiveness of emulsified acid on sandstone formation under high temperature conditions. In IOP Conference Series: Materials Science and Engineering (Vol. 495, No. 1, p. 012113). IOP Publishing. ##
[130]. Shafiq, M. U., Chong, Y. J., Mahmud, H. K. B., Hossain, M. M., Rezaee, R., & Testamanti, N. (2019). Application of emulsified acids on sandstone formation at elevated temperature conditions: an experimental study. Journal of Petroleum Exploration and Production Technology, 9(2), 1323-1329. ##
[131]. Chang, F. F., Qiu, X., & Nasr-El-Din, H. A. (2007, February). Chemical diversion techniques used for carbonate matrix acidizing: An overview and case histories. In SPE International Conference on Oilfield Chemistry? (pp. SPE-106444). SPE. doi.org/10.2118/106444-MS. ##
[132]. حبیبی، ر. و نجمالدینی، م. ر. (1397). مروری بر روشهای شیمیایی انحراف مورد استفاده در اسیدکاری مخازن کربناته. هفتمین کنفرانس بینالمللی نفت،گاز، پالایش و پتروشیمی با رویکرد توسعه ارتباط دولت، دانشگاه و صنعت. شیراز . ##
[133].Bale, G. E. (1984). Matrix acidizing in Saudi Arabia using buoyant ball sealers. Journal of petroleum technology, 36(10), 1748-1752. doi.org/10.2118/11500-PA. ##
[134]. Firdaus S. PETROSYMC Blog. 2024. Coiled Tubing: Definition, Components, Application & Process. Available from: https://www.petrosync.com/blog/what-is-coiled-tubing/.##
[135]. Cohen, C. E., Tardy, P. M., Lesko, T., Lecerf, B., Pavlova, S., Voropaev, S., & Mchaweh, A. (2010, September). Understanding diversion with a novel fiber-laden acid system for matrix acidizing of carbonate formations. In SPE Annual Technical Conference and Exhibition? (pp. SPE-134495). SPE. doi.org/10.2118/134495-MS. ##
[136]. Taylor, K. C., & Nasr-El-Din, H. A. (2003). Laboratory evaluation of in-situ gelled acids for carbonate reservoirs. Spe Journal, 8(04), 426-434. doi.org/10.2118/87331-PA.##
[137]. Taylor, K. C., & Nasr-El-Din, H. A. (2002, February). Coreflood evaluation of in-situ gelled acids. In SPE International Conference and Exhibition on Formation Damage Control (pp. SPE-73707). SPE. doi.org/10.2118/73707-MS. ##
[138]. Amro, M. M. (2006, May). Extended matrix acidizing using polymer-acid solutions. In SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition (pp. SPE-106360). SPE. doi.org/10.2118/106360-MS. ##
[139]. Zakaria, A. S., & Nasr-El-Din, H. A. (2016). A novel polymer-assisted emulsified-acid system improves the efficiency of carbonate matrix acidizing. SPE Journal, 21(03), 1061-1074. doi.org/10.2118/173711-PA.
[140]. Lungwitz, B., Fredd, C., Brady, M., Miller, M., Ali, S., & Hughes, K. (2007). Diversion and cleanup studies of viscoelastic surfactant-based self-diverting acid. SPE Production & Operations, 22(01), 121-127. doi.org/10.2118/86504-PA. ##
[141]. Chang, F., Qu, Q., & Frenier, W. (2001, February). A novel self-diverting-acid developed for matrix stimulation of carbonate reservoirs. In SPE International Conference on Oilfield Chemistry? (pp. SPE-65033). SPE. doi.org/10.2118/65033-MS. ##
[142]. Li, L., Nasr-El-Din, H. A., & Cawiezel, K. E. (2010). Rheological properties of a new class of viscoelastic surfactant. SPE Production & Operations, 25(03), 355-366. doi.org/10.2118/121716-PA. ##
[143]. Al-Nakhli, A. R., Nasr-El-Din, H. A., & Al-Baiyat, A. A. (2008, March). Interactions of iron and viscoelastic surfactants during well stimulation: A new formation damage mechanism. In SPE Saudi Arabia section Young Professionals Technical Symposium (pp. SPE-117060). SPE. doi.org/10.2118/117060-MS. ##
[144]. پنجعلیزاده، ح.، آرینفر، ی.، بهرامی، غ.، متولین سیدی، ع. و جعفری، ح. (1398). بررسی آزمایشگاهی اثر یون آهن و افزایه کاهنده یون آهن بر عملکرد سورفکتانت های ویسکوالاستیک. اکتشاف و تولید نفت و گاز. 166:54–8. ##
[145]. Guidry GS, Ruiz GA, Saxon A. SXE/N2 matrix acidizing. In: Middle East Oil Show. OnePetro; 1989. ##
[146]. Montgomery, C. T., Jan, Y. M., & Niemeyer, B. L. (1995). Development of a matrix-acidizing stimulation treatment evaluation and recording system. SPE Production & Facilities, 10(04), 219-224. doi.org/10.2118/26579-PA. ##
[147]. Hedayati, E., Mohammadzadeh-Shirazi, M., Abbasi, A., & Malayeri, M. R. (2023). Experimental investigation of the acid-oil emulsion stability influenced by operational conditions and oil properties. Journal of Molecular Liquids, 390, 123132. doi.org/10.1016/j.molliq.2023.123132. ##
[148]. عباسی، ا.، محمدزاده شیرازی، م.، و ملایری، م. ر. (1403). مروری بر روش انجام آزمایش سازگاری اسید و نفت خام بهمنظور پیشگیری از تشکیل امولسیون و لجن اسیدی و بازبینی آن براساس شرایط میدانی. پژوهش نفت. 34(5):20–34. doi: 10.22078/pr.2024.5359.3385.##