[1]. حقیقی م.، رحمانی ف.، دهقانی ر ا.، مظاهری ا. و میرانزاده م ب. (1395) احیا فتوکاتالیستی کارآمد کروم شش ظرفیتی با استفاده از نانوکریستالهای تثبیت شده ZnO تحت تابش نور UV: اثر هم افزایی زئولیت HZSM-5 به عنوان پایه، پژوهشهای کاربردی در شیمی، (2016): 16-5.##
[2]. Singh, S., Verma, N., Umar, A., & Kansal, S. K. (2024). ZnCdS nanoparticles decorated three-dimensional MoO3 polygonal structure: a novel photocatalyst for enhanced solar light-driven degradation of methyl orange dye. Journal of Alloys and Compounds, 997, 174714. doi.org/10.1016/j.jallcom.2024.174714.##
[3]. Nur, A. S., Sultana, M., Mondal, A., Islam, S., Robel, F. N., Islam, A., & Sumi, M. S. A. (2022). A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. Journal of Water Process Engineering, 47, 102728. doi.org/10.1016/j.jwpe.2022.102728. ##
[4]. Arumugam, S., Alsawalha, M., Srivastava, P., Megala, M. A., Rojviroon, O., Rajendran, R., Phetyim, N. & Rojviroon, T. (2025). Microwave-assisted synthesis of Nd-doped La2CuO4 perovskite photocatalysts for enhanced degradation of methyl orange and E. Coli inactivation in wastewater treatment. Journal of Industrial and Engineering Chemistry. doi.org/10.1016/j.jiec.2025.07.038.##
[5]. Bhuyan, A., & Ahmaruzzaman, M. (2024). Recent advances in MOF-5-based photocatalysts for efficient degradation of toxic organic dyes in aqueous medium. Next Sustainability, 3, 100016. doi.org/10.1016/j.nxsust.2023.100016. ##
[6]. Sunardi, A.B., Choirunnisa, F., Dewi, A.S., Widiyandari, H., Astuti, Y., Arutanti, O., Salim, A.A. and Mufti, N., 2025. Enriched photocatalytic degradation of methylene orange dye using carbon quantum dots surface-decorated TiO2 nanocomposites. Materials Chemistry and Physics, 329, 130049. doi.org/10.1016/j.matchemphys.2024.130049. ##
[7]. Abbasi, S. (2025). Investigating the kinetic models governing the photodecomposition of methyl orange by two-dimensional magnetic photocatalysts. Optical Materials, 117173. doi.org/10.1016/j.optmat.2025.117173.##
[8]. Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717, 137222. doi.org/10.1016/j.scitotenv.2020.137222.##
[9]. Wu, L., Liu, X., Lv, G., Zhu, R., Tian, L., Liu, M., Li, Y., Rao, W., Liu, T. and Liao, L., 2021. Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures. Scientific Reports, 11(1), 10640.##
[10]. El Bourachdi, S., El Amri, A., Ayub, A.R., Moussaoui, F., Rakcho, Y., El Ouadrhiri, F., Adachi, A., Lechheb, M., Herrera-Melián, J.A. & Lahkimi, A., (2025). Development of a novel low-cost adsorbent Chitosan@ EDTA@ Cellulose composite to effectively remove Methyl Orange dye from wastewater: Experimental and theoretical investigation. International Journal of Biological Macromolecules, 305, p.141030. doi.org/10.1016/j.ijbiomac.2025.141030.##
[11]. Sharma, S., Mittal, A., Chauhan, N. S., Makgwane, P. R., Kumari, K., Maken, S., & Kumar, N. (2021). Developments in visible-light active TiO2/SnX (X= S and Se) and their environmental photocatalytic applications–a mini-review. Inorganic Chemistry Communications, 133, 108874. doi.org/10.1016/j.inoche.2021.108874.##
[12]. Thirugnanam, R., Kannan, A., Ramasundaram, S., Kumaravel, S., Altaf, M., Oh, T.H., Jayababu, S., Narayanasamy, S., Ganesamoorthy, T. and Inbasekaran, M., 2024. Radiant synergy: Illuminating methyl orange dye removal with g-C3N4/ZnO heterojunction photocatalyst. Diamond and Related Materials, 147, p.111325. doi.org/10.1016/j.diamond.2024.111325.##
[13]. Berdini, F., Heffner, H., Marchetti, J. M., López-Corral, I., & Brigante, M. (2024). Theoretical-experimental design of TiO2 photocatalysts for removal of emerging pollutants from water: The effect of Ga doping on photodegradation of methyl orange. Journal of Water Process Engineering, 68, 106426. doi.org/10.1016/j.jwpe.2024.106426.##
[14]. Swarupa, G., Anuradha, N., Narsimha, K., Sudarshan, K., Upender, G., & Kumar, B. V. (2024). Enhanced photocatalytic efficiency of BaTiO= augmented by ZnS nanospheres via Type-II heterojunction for methyl orange degradation. Materials Science in Semiconductor Processing, 182, 108715. doi.org/10.1016/j.mssp.2024.108715.##
[15]. Zhang, J., Gao, Y., Ren, F., Lu, Y., Xue, Y., Chen, L., Feng, X. and Zhao, Y., (2025). S-C3N4/BiOI S-scheme heterojunction photocatalyst for efficient degradation of organic dyes. Journal of Alloys and Compounds, 182270. doi.org/10.1016/j.jallcom.2025.182270.##
[16]. Gishkori, S. N., Abbas, G., & Zahid, A. H. (2024). Controlled synthesis of 3D pseudocubic Fe2O3/BiFeO3 heterojunction photocatalyst for effective ciprofloxacin-HCl and methyl orange degradation. Materials Letters, 377, 137573. doi.org/10.1016/j.matlet.2024.137573.##
[17]. Yeoh, J. Z., Pung, S. Y., Vadivelu, V. M., & Ramakrishnan, S. (2024). Recent advances in the development of effective TiO2-based photocatalysts immobilized on floating substrates: A mini review. Environmental Nanotechnology, Monitoring & Management, 101021. doi.org/10.1016/j.enmm.2024.101021.##
[18]. خان محمدی م.، رحمانی ف. و رهبر شهروزی ج. (1401) تثبیت نانوذرههای کاتالیستی نوری TiO2 بر روی جاذب متخلخل مزوروزنه MCM-41 به منظور پالایش آب آلوده به آنتیبیوتیک تتراسایکلین، نشریه شیمی و مهندسی شیمی ایران، 41، 1، 233-219.##
[19]. اکبری سنه ر.، رحمانی ف.، مرادی غ. و شریفنیا ش. (1399) تثبیت نانوذرات TiO2 برروی آلومیناسیلیکات طبیعی فرآوری شده جهت تولید هیدروژن: ارزیابی اثر فرآوری شیمیایی پایه و شرایط عملیاتی فرآیند، پژوهش نفت، 30، 2-99، 30-14 .doi: 10.22078/pr.2020.3827.2743.##
[20]. Prakash, J., Kumar, A., Dai, H., Janegitz, B. C., Krishnan, V., Swart, H. C., & Sun, S. (2021). Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Materials Today Sustainability, 13, 100066. doi.org/10.1016/j.mtsust.2021.100066.##
[21]. Khanmohammadi, M., Shahrouzi, J. R., & Rahmani, F. (2021). Insights into mesoporous MCM-41-supported titania decorated with CuO nanoparticles for enhanced photodegradation of tetracycline antibiotic. Environmental Science and Pollution Research, 28(1), 862-879. ##
[22]. Gopinath, K. P., Madhav, N. V., Krishnan, A., Malolan, R., & Rangarajan, G. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. Journal of Environmental Management, 270, 110906. doi.org/10.1016/j.jenvman.2020.110906.##
[23]. اکبری سنه ر.، شریفنیا ش. و مرادی غ. (1400) بهینهسازی تولید هیدروژن با استفاده از نانوفتوکاتالیستهای تیتانیا/زئولیت فرآوری شده با بهکارگیری روش سطح پاسخ براساس طراحی باکس-بنکن، سوخت و احتراق، 14، 3، 32-17 .doi: .10.22034/jfnc.2021.272744.126.##
[24]. Zhang, Y., & Yan, J. (2023). Recent advances in the synthesis of defective TiO2 nanofibers and their applications in energy and catalysis. Chemical Engineering Journal, 144831. doi.org/10.1016/j.cej.2023.144831.##
[25]. Bhullar, V., Sardana, S., & Mahajan, A. (2021). Size modeling of TiO2 nanofibers for efficient TiO2 sensitized mesoscopic solar cells. Solar Energy, 230, 177-185. doi.org/10.1016/j.solener.2021.10.023.##
[26]. مرادی ا.، رحمانی ف. و خامفروش م. (1399) سنتز نانوالیاف کامپوزیتی بر پایه تیتانیم دیاکسید دوپهشده با نانوذرات مس اکسید با الکتروریسی و کاربرد آنها در تخریب نورکاتالیزی پسابهای دارویی، نشریه علوم و تکنولوژی پلیمر، 33، 6، 478-465 .di: 10.22063/jipst.2021.1775.##
[27]. Lu, Y., Ou, X., Wang, W., Fan, J., & Lv, K. (2020). Fabrication of TiO2 nanofiber assembly from nanosheets (TiO2-NFs-NSs) by electrospinning-hydrothermal method for improved photoreactivity. Chinese Journal of Catalysis, 41(1), 209-218. doi.org/10.1016/S1872-2067(19)63470-4.##
[28]. Xu, F., Tan, H., Fan, J., Cheng, B., Yu, J., & Xu, J. (2021). Electrospun TiO2‐based photocatalysts. Solar RRL, 5(6), 2000571.##
[29]. Moradi, A., Khamforoush, M., Rahmani, F., & Ajamein, H. (2023). Synthesis of 0D/1D electrospun titania nanofibers incorporating CuO nanoparticles for tetracycline photodegradation and modeling and optimization of the removal process. Materials Science and Engineering: B, 297, 116711. doi.org/10.1016/j.mseb.2023.116711.##
[30]. Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298-5415.##
[31]. Wang, X. X., Yu, G. F., Zhang, J., Yu, M., Ramakrishna, S., & Long, Y. Z. (2021). Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Progress in Materials Science, 115, 100704. doi.org/10.1016/j.pmatsci.2020.100704.##
[32]. Liu, R., Ye, H., Xiong, X., & Liu, H. (2010). Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Materials Chemistry and Physics, 121(3), 432-439. doi.org/10.1016/j.matchemphys.2010.02.002.##
[33]. Doh, S. J., Kim, C., Lee, S. G., Lee, S. J., & Kim, H. (2008). Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. Journal of Hazardous Materials, 154(1-3), 118-127. doi.org/10.1016/j.jhazmat.2007.09.118.##
[34]. Choi, S. K., Kim, S., Lim, S. K., & Park, H. (2010). Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: effects of mesoporosity and interparticle charge transfer. The Journal of Physical Chemistry C, 114(39), 16475-16480. doi.org/10.1021/jp104317x.##
[35]. Quang, D. A., Toan, T. T. T., Tung, T. Q., Hoa, T. T., Mau, T. X., & Khieu, D. Q. (2018). Synthesis of CeO2/TiO2 nanotubes and heterogeneous photocatalytic degradation of methylene blue. Journal of Environmental Chemical Engineering, 6(5), 5999-6011. doi.org/10.1016/j.jece.2018.09.022.##
[36]. Ong, W. J., Tan, L. L., Chai, S. P., Yong, S. T., & Mohamed, A. R. (2014). Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale, 6(4), 1946-2008. doi.org/10.1039/C3NR04655A.##
[37]. Chong, M. N., Jin, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Research, 44(10), 2997-3027. doi.org/10.1016/j.watres.2010.02.039.##
[38]. Barakat, N. A., Erfan, N. A., Mohammed, A. A., & Mohamed, S. E. (2020). Ag-decorated TiO2 nanofibers as Arrhenius equation-incompatible and effective photocatalyst for water splitting under visible light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604, 125307. doi.org/10.1016/j.colsurfa.2020.125307.##
[39]. Tai, C., Zhang, Z., Ji, X. Y., Ma, J., Han, X., Wang, R., Lu, Q., Wei, M., Si, C., Chen, S., & Guo, E. (2024). Ternary heterojunction of 1D CeO2/TiO2 nanofibers decorated with In2S3 nanosheets boosting the photodegradation of organic pollutants. Surfaces and Interfaces, 104177. doi.org/10.1016/j.surfin.2024.104177.##
[40]. Amini, A., Rahmani, F., Kkamforoush, M., & Sene, R. A. (2023). Bentonite nanoparticles-incorporated ZnO nanofiber mats assembly by electro-centrifuge spinning for efficient photo-degradation of bentazon herbicide: Tuning composition and process optimization. Journal of Cleaner Production, 137652. doi.org/10.1016/j.jclepro.2023.137652.##
[41]. Lin, L., Jiang, W., Bechelany, M., Nasr, M., Jarvis, J., Schaub, T., Sapkota, R.R., Miele, P., Wang, H., & Xu, P. (2019). Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: Degradation products and mechanisms. Chemosphere, 220, 921-929. doi.org/10.1016/j.chemosphere.2018.12.184.##
[42]. Cao, T., Li, Y., Wang, C., Wei, L., Shao, C., & Liu, Y. (2010). Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nanofibers heterostructures. Materials Research Bulletin, 45(10), 1406-1412. doi.org/10.1016/j.materresbull.2010.06.043.##
[43]. Vieira, G. B., José, H. J., Peterson, M., Baldissarelli, V. Z., Alvarez, P., & Moreira, R. d. F. P. M. (2018). CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 353, 325-336. doi.org/10.1016/j.jphotochem.2017.11.045.##
[44]. Radić, N., Grbić, B., Stojadinović, S., Ilić, M., Došen, O., & Stefanov, P. (2022). TiO2–CeO2 composite coatings for photocatalytic degradation of chloropesticide and organic dye. Journal of Materials Science: Materials in Electronics, 33(8), 5073-5086.##
[45]. Janani, F.Z., Khiar, H., Taoufik, N., Elhalil, A., Sadiq, M., Puga, A.V., Mansouri, S. and Barka, N. (2021). ZnO–Al2O3–CeO2–Ce2O3 mixed metal oxides as a promising photocatalyst for methyl orange photocatalytic degradation. Materials Today Chemistry, 21, 100495. doi.org/10.1016/j.mtchem.2021.100495.##
[46]. Yengejeh, S. M., Allahyari, S., & Rahemi, N. (2020). Efficient oxidative desulfurization of model fuel by visible-light-driven MoS2-CeO2/SiO2-Al2O3 nano photocatalyst coating. Process Safety and Environmental Protection, 143, 25-35. doi.org/10.1016/j.psep.2020.05.042.##
[47]. Neves, T. M., Frantz, T. S., do Schenque, E. C. C., Gelesky, M. A., & Mortola, V. B. (2017). An investigation into an alternative photocatalyst based on CeO2/Al2O3 in dye degradation. Environmental Technology & Innovation, 8, 349-359. doi.org/10.1016/j.eti.2017.08.003.##
[48]. Ezati, F., Sepehr, E., & Ahmadi, F. (2021). The efficiency of nano-TiO2 and γ-Al2O3 in copper removal from aqueous solution by characterization and adsorption study. Scientific Reports, 11(1), 18831.##
[49]. Yu, C., Wang, S., Zhang, K., Li, M., Gao, H., Zhang, J., Yang, H., Hu, L., Jagadeesha, A.V., & Li, D. (2023). Visible-light-enhanced photocatalytic activity of BaTiO3/γ-Al2O3 composite photocatalysts for photodegradation of tetracycline hydrochloride. Optical Materials, 135, 113364. doi.org/10.1016/j.optmat.2022.113364.##
[50]. Rahmani, F., Haghighi, M., & Estifaee, P. (2014). Synthesis and characterization of Pt/Al2O3–CeO2 nanocatalyst used for toluene abatement from waste gas streams at low temperature: Conventional vs. plasma–ultrasound hybrid synthesis methods. Microporous and Mesoporous Materials, 185, 213-223. doi.org/10.1016/j.micromeso.2013.11.019.##
[51]. Al Farraj, D. A., Al-Mohaimeed, A. M., Alkufeidy, R. M., & Alkubaisi, N. A. (2021). Facile synthesis and characterization of CeO2-Al2O3 nano-heterostructure for enhanced visible-light photocatalysis and bactericidal applications. Colloid and Interface Science Communications, 41, 100375. doi.org/10.1016/j.colcom.2021.100375.##
[52]. Chen, W. J., Hsu, K. C., Fang, T. H., Lee, C. I., Chen, T. H., & Hsieh, T. H. (2021). Structural, optical characterization and photocatalytic behavior of Ag/TiO2 nanofibers. Dig J Nanomater Bios, 16, 1227.##
[53]. Feng, C., Zhang, L., & Cheng, Z. (2020). Preparation of Spry‐Liked CdS‐TiO2 One‐Dimensional Composite Nanomaterial and Its Photocatalytic Degradation Efficiency. ChemistrySelect, 5(7), 2142-2147.##
[54]. Shafique, M., Mahr, M. S., Yaseen, M., & Bhatti, H. N. (2022). CQD/TiO2 nanocomposite photocatalyst for efficient visible light-driven purification of wastewater containing methyl orange dye. Materials Chemistry and Physics, 278, 125583. doi.org/10.1016/j.matchemphys.2021.125583.##
[55]. Kader, S., Al-Mamun, M. R., Suhan, M. B. K., Shuchi, S. B., & Islam, M. S. (2022). Enhanced photodegradation of methyl orange dye under UV irradiation using MoO3 and Ag doped TiO2 photocatalysts. Environmental Technology & Innovation, 27, 102476. doi.org/10.1016/j.eti.2022.102476.##
[56]. Razavi, F. S., Ghanbari, D., Dawi, E. A., & Salavati-Niasari, M. (2023). Electrospun bimetallic Au–Pt/TiO2/BaFe12O19 nanofibers as promising photocatalysts driven by visible light: synthesis and characterization. Journal of Science: Advanced Materials and Devices, 8(2), 100559.doi: 10.1016/j.jsamd.2023.100559.##
[57]. Tai, C., Zhang, Z., Ji, X.Y., Ma, J., Han, X., Wang, R., Lu, Q., Wei, M., Si, C., Chen, S. & Guo, E. (2024). Ternary heterojunction of 1D CeO2/TiO2 nanofibers decorated with In2S3 nanosheets boosting the photodegradation of organic pollutants. Surfaces and Interfaces, 104177. doi.org/10.1016/j.surfin.2024.104177.##