آلایش ساختاری نانوالیاف تیتانیا با نانوذرات کامپوزیتی سریا-آلومینا جهت بهبود عملکرد فتوکاتالیستی در تصفیه پساب رنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

10.22078/pr.2025.5562.3470

چکیده

در پژوهش حاضر، تأثیر آلایش ساختاری نانوالیاف تیتانیا با مقادیر مختلف از نانوذرات کامپوزیتی سریا-آلومینا بر خواص و کارآیی فتوکاتالیستی در فرآیند تصفیه آب آلوده به آلاینده رنگی متیل اورانژ مورد مطالعه و بررسی قرار گرفت. بدین منظور، در ابتدا نانوذرات آلومینای کامپوزیتی حاوی wt.% 30 سریا با استفاده از روش تلقیح سنتز شدند و سپس مقادیر متفاوتی از آن (1، 5/2 و wt.% 5) در محلول پیش‌ساز تیتانیا پراکنده شده و برای تهیه نانوالیاف تیتانیای آلاییده به نانوذرات الکتروریسی شدند. نانوذرات سریا-آلومینا و نانوالیاف کامپوزیتی بهینه با استفاده از آنالیزهای XRD ،FESEM و EDX مشخصه‌یابی شدند. تشکیل فازهای کریستالی سریا و آلومینا‌ و نیز شناسایی عناصر اکسیژن، آلومینیوم و سریم به ترتیب در آنالیزهای XRD و EDX صحت سنتز نانوذرات کامپوزیتی سریا-آلومینا را تأیید کردند. نتایج آنالیزهای شناسایی نشان دادند که آلایش ساختاری نانوالیاف تیتانیا با مقدار مناسب از نانوذرات سریا-آلومینا سبب تغییر محسوسی در ساختار کریستالی و مورفولوژی نانوالیاف تیتانیا نمی‌شود. شناسایی عناصر آلومینیوم و سریم مؤید حضور نانوذرات سریا-آلومینا در ساختار نانوالیاف تیتانیای آلایش یافته بود. با توجه به نتایج عملکردی، مشخص شد که آلایش ساختاری با نانوذرات ظرفیت جذب نانوالیاف تیتانیا را افزایش می‌دهد. بعلاوه،  wt.% 1 به عنوان مقدار بهینه نانوذرات سریا-آلومینا جهت آلایش ساختاری نانوالیاف انتخاب شد. این نانوالیاف توانست در مدت زمان 2 ساعت تابش نور UV‌ تقریباً 74% از آلاینده رنگی را تخریب نماید. با افزایش مقدار نانوذرات، راندمان حذف نانوالیاف به تدریج کاهش یافت که می‌توان آن را به کاهش تعداد سایت‌های فعال در دسترس و مسدود شدن سایت‌های تیتانیا با نانوذرات و نیز احتمالاً افزایش میزان بازترکیبی جفت‌های الکترون-حفره نسبت داد. بررسی مدل‌های سینتیکی مختلف برای نانوالیاف آلایش یافته بهینه نشان داد که نتایج حاصل از تجزیه نوری متیل اورانژ با مدل سینتیکی مرتبه اول بیشترین مطابقت را دارد (99/0<R2).

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Structural Decoration of Titania Nanofibers with Ceria-Alumina Composite Nanoparticles to Promote Photocatalytic Performance in the Dye Wastewater Treatment

نویسندگان [English]

  • Zaniar Hasanzadeh
  • Farhad Rahmani
  • Mehrdad Khamforoush
  • Rojiar Akbari Sene
  • Avin Zandi
Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
چکیده [English]

In the present study, the effect of structural decoration of titania nanofibers with different amounts of ceria-alumina composite nanoparticles on photocatalytic properties and efficiency in the treatment process of water contaminated with methyl orange dye pollutant was studied and investigated. For this purpose, composite alumina nanoparticles containing 30 wt.% of ceria were initially synthesized using the impregnation method, and then varying amounts of these nanoparticles (1, 2.5, and 5 wt.%) were dispersed into the electrospining titania precursor solution, and then, electrospun to prepare titania nanofibers decorated with nanoparticles. Ceria-alumina nanoparticles and optimized composite nanofibers were characterized by XRD, FESEM and EDX analyses. The formation of ceria and alumina crystalline phases and the identification of oxygen, aluminum and cerium elements in XRD and EDX analyses confirmed the authenticity of the claimed synthesis of ceria-alumina composite nanoparticles. The characterization results also indicate that the structural decoration of titania nanofibers with an appropriate amount of ceria-alumina nanoparticles does not cause a noticeable change in the morphology and crystalline structure of titania nanofibers. The identification of aluminum and cerium elements confirmed the presence of ceria-alumina nanoparticles in the structure of decorated titania nanofibers. According to the performance results, it was found that structural decoration with nanoparticles increases the adsorption capacity of titania nanofibers. Furthermore, 1 wt.% was selected as the optimal amount of ceria-alumina nanoparticles for structural decoration of nanofibers. This photocatalyst eliminated approximately 74% of the dye pollutant within 2 h irradiation of UV light. With the increase in the loading content of nanoparticles, the removal efficiency of nanofibers gradually diminishes, which can be attributed to the decrease in the number of accessible active sites and the increase in the recombination rate of electron-hole pairs. Examining different kinetic models for optimally decorated nanofibers revealed that the results of photodecomposition of methyl orange are most consistent with the first-order kinetic model (R2>0.99).

کلیدواژه‌ها [English]

  • TiO2 nanofibers
  • CeO2-Al2O3 nanoparticles
  • Photocatalytic degradation
  • Methyl orange
  • Kinetic studies
[1]. حقیقی م.، رحمانی ف.، دهقانی ر ا.، مظاهری ا. و میران‌زاده م ب. (1395) احیا فتوکاتالیستی کارآمد کروم شش ظرفیتی با استفاده از نانوکریستال‌های تثبیت شده ZnO تحت تابش نور UV: اثر هم افزایی زئولیت HZSM-5 به عنوان پایه، پژوهش‌های کاربردی در شیمی، (2016): 16-5.‎##
[2]. Singh, S., Verma, N., Umar, A., & Kansal, S. K. (2024). ZnCdS nanoparticles decorated three-dimensional MoO3 polygonal structure: a novel photocatalyst for enhanced solar light-driven degradation of methyl orange dye. Journal of Alloys and Compounds, 997, 174714. doi.org/10.1016/j.jallcom.2024.174714.##
[3]. Nur, A. S., Sultana, M., Mondal, A., Islam, S., Robel, F. N., Islam, A., & Sumi, M. S. A. (2022). A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. Journal of Water Process Engineering, 47, 102728. doi.org/10.1016/j.jwpe.2022.102728. ##
[4]. Arumugam, S., Alsawalha, M., Srivastava, P., Megala, M. A., Rojviroon, O., Rajendran, R., Phetyim, N. & Rojviroon, T. (2025). Microwave-assisted synthesis of Nd-doped La2CuO4 perovskite photocatalysts for enhanced degradation of methyl orange and E. Coli inactivation in wastewater treatment. Journal of Industrial and Engineering Chemistry. doi.org/10.1016/j.jiec.2025.07.038.##
[5]. Bhuyan, A., & Ahmaruzzaman, M. (2024). Recent advances in MOF-5-based photocatalysts for efficient degradation of toxic organic dyes in aqueous medium. Next Sustainability, 3, 100016. doi.org/10.1016/j.nxsust.2023.100016. ##
[6]. Sunardi, A.B., Choirunnisa, F., Dewi, A.S., Widiyandari, H., Astuti, Y., Arutanti, O., Salim, A.A. and Mufti, N., 2025. Enriched photocatalytic degradation of methylene orange dye using carbon quantum dots surface-decorated TiO2 nanocomposites. Materials Chemistry and Physics, 329, 130049. doi.org/10.1016/j.matchemphys.2024.130049. ##
[7]. Abbasi, S. (2025). Investigating the kinetic models governing the photodecomposition of methyl orange by two-dimensional magnetic photocatalysts. Optical Materials, 117173. doi.org/10.1016/j.optmat.2025.117173.##
[8]. Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717, 137222. doi.org/10.1016/j.scitotenv.2020.137222.##
[9]. Wu, L., Liu, X., Lv, G., Zhu, R., Tian, L., Liu, M., Li, Y., Rao, W., Liu, T. and Liao, L., 2021. Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures. Scientific Reports, 11(1), 10640.##
[10]. El Bourachdi, S., El Amri, A., Ayub, A.R., Moussaoui, F., Rakcho, Y., El Ouadrhiri, F., Adachi, A., Lechheb, M., Herrera-Melián, J.A. & Lahkimi, A., (2025). Development of a novel low-cost adsorbent Chitosan@ EDTA@ Cellulose composite to effectively remove Methyl Orange dye from wastewater: Experimental and theoretical investigation. International Journal of Biological Macromolecules, 305, p.141030. doi.org/10.1016/j.ijbiomac.2025.141030.##
[11]. Sharma, S., Mittal, A., Chauhan, N. S., Makgwane, P. R., Kumari, K., Maken, S., & Kumar, N. (2021). Developments in visible-light active TiO2/SnX (X= S and Se) and their environmental photocatalytic applications–a mini-review. Inorganic Chemistry Communications, 133, 108874. doi.org/10.1016/j.inoche.2021.108874.##
[12]. Thirugnanam, R., Kannan, A., Ramasundaram, S., Kumaravel, S., Altaf, M., Oh, T.H., Jayababu, S., Narayanasamy, S., Ganesamoorthy, T. and Inbasekaran, M., 2024. Radiant synergy: Illuminating methyl orange dye removal with g-C3N4/ZnO heterojunction photocatalyst. Diamond and Related Materials, 147, p.111325. doi.org/10.1016/j.diamond.2024.111325.##
[13]. Berdini, F., Heffner, H., Marchetti, J. M., López-Corral, I., & Brigante, M. (2024). Theoretical-experimental design of TiO2 photocatalysts for removal of emerging pollutants from water: The effect of Ga doping on photodegradation of methyl orange. Journal of Water Process Engineering, 68, 106426. doi.org/10.1016/j.jwpe.2024.106426.##
[14]. Swarupa, G., Anuradha, N., Narsimha, K., Sudarshan, K., Upender, G., & Kumar, B. V. (2024). Enhanced photocatalytic efficiency of BaTiO= augmented by ZnS nanospheres via Type-II heterojunction for methyl orange degradation. Materials Science in Semiconductor Processing, 182, 108715. doi.org/10.1016/j.mssp.2024.108715.##
[15]. Zhang, J., Gao, Y., Ren, F., Lu, Y., Xue, Y., Chen, L., Feng, X. and Zhao, Y., (2025). S-C3N4/BiOI S-scheme heterojunction photocatalyst for efficient degradation of organic dyes. Journal of Alloys and Compounds, 182270. doi.org/10.1016/j.jallcom.2025.182270.##
[16]. Gishkori, S. N., Abbas, G., & Zahid, A. H. (2024). Controlled synthesis of 3D pseudocubic Fe2O3/BiFeO3 heterojunction photocatalyst for effective ciprofloxacin-HCl and methyl orange degradation. Materials Letters, 377, 137573. doi.org/10.1016/j.matlet.2024.137573.##
[17]. Yeoh, J. Z., Pung, S. Y., Vadivelu, V. M., & Ramakrishnan, S. (2024). Recent advances in the development of effective TiO2-based photocatalysts immobilized on floating substrates: A mini review. Environmental Nanotechnology, Monitoring & Management, 101021. doi.org/10.1016/j.enmm.2024.101021.##
[18]. خان محمدی م.، رحمانی ف. و رهبر شهروزی ج. (1401) تثبیت نانوذره‌های کاتالیستی نوری TiO2 بر روی جاذب متخلخل مزوروزنه MCM-41 به منظور پالایش آب آلوده به آنتی‌بیوتیک تتراسایکلین، نشریه شیمی و مهندسی شیمی ایران، 41، 1، 233-219.##
[19]. اکبری سنه ر.، رحمانی ف.، مرادی غ. و شریف‌نیا ش. (1399) تثبیت نانوذرات TiO2 برروی آلومیناسیلیکات طبیعی فرآوری شده جهت تولید هیدروژن: ارزیابی اثر فرآوری شیمیایی پایه و شرایط عملیاتی فرآیند، پژوهش نفت، 30، 2-99، 30-14 .doi: 10.22078/pr.2020.3827.2743.##
[20]. Prakash, J., Kumar, A., Dai, H., Janegitz, B. C., Krishnan, V., Swart, H. C., & Sun, S. (2021). Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Materials Today Sustainability, 13, 100066. doi.org/10.1016/j.mtsust.2021.100066.##
[21]. Khanmohammadi, M., Shahrouzi, J. R., & Rahmani, F. (2021). Insights into mesoporous MCM-41-supported titania decorated with CuO nanoparticles for enhanced photodegradation of tetracycline antibiotic. Environmental Science and Pollution Research, 28(1), 862-879. ##
[22]. Gopinath, K. P., Madhav, N. V., Krishnan, A., Malolan, R., & Rangarajan, G. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. Journal of Environmental Management, 270, 110906. doi.org/10.1016/j.jenvman.2020.110906.##
[23]. اکبری سنه ر.، شریف‌نیا ش. و مرادی غ. (1400) بهینه‌سازی تولید هیدروژن با استفاده از نانوفتوکاتالیست‌های تیتانیا/زئولیت فرآوری شده با به‌کارگیری روش سطح پاسخ براساس طراحی باکس-بنکن، سوخت و احتراق، 14، 3، 32-17 .doi: .10.22034/jfnc.2021.272744.126.##
[24]. Zhang, Y., & Yan, J. (2023). Recent advances in the synthesis of defective TiO2 nanofibers and their applications in energy and catalysis. Chemical Engineering Journal, 144831. doi.org/10.1016/j.cej.2023.144831.##
[25]. Bhullar, V., Sardana, S., & Mahajan, A. (2021). Size modeling of TiO2 nanofibers for efficient TiO2 sensitized mesoscopic solar cells. Solar Energy, 230, 177-185. doi.org/10.1016/j.solener.2021.10.023.##
[26]. مرادی ا.، رحمانی ف. و خامفروش م. (1399) سنتز نانوالیاف کامپوزیتی بر پایه تیتانیم دی‌‌اکسید دوپه‌شده با نانوذرات مس اکسید با الکتروریسی و کاربرد آن‌ها در تخریب نورکاتالیزی پساب‌های دارویی، نشریه علوم و تکنولوژی پلیمر، 33، 6، 478-465 .di: 10.22063/jipst.2021.1775.##
[27]. Lu, Y., Ou, X., Wang, W., Fan, J., & Lv, K. (2020). Fabrication of TiO2 nanofiber assembly from nanosheets (TiO2-NFs-NSs) by electrospinning-hydrothermal method for improved photoreactivity. Chinese Journal of Catalysis, 41(1), 209-218. doi.org/10.1016/S1872-2067(19)63470-4.##
[28]. Xu, F., Tan, H., Fan, J., Cheng, B., Yu, J., & Xu, J. (2021). Electrospun TiO2‐based photocatalysts. Solar RRL, 5(6), 2000571.##
[29]. Moradi, A., Khamforoush, M., Rahmani, F., & Ajamein, H. (2023). Synthesis of 0D/1D electrospun titania nanofibers incorporating CuO nanoparticles for tetracycline photodegradation and modeling and optimization of the removal process. Materials Science and Engineering: B, 297, 116711. doi.org/10.1016/j.mseb.2023.116711.##
[30]. Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298-5415.##
[31]. Wang, X. X., Yu, G. F., Zhang, J., Yu, M., Ramakrishna, S., & Long, Y. Z. (2021). Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Progress in Materials Science, 115, 100704. doi.org/10.1016/j.pmatsci.2020.100704.##
[32]. Liu, R., Ye, H., Xiong, X., & Liu, H. (2010). Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Materials Chemistry and Physics, 121(3), 432-439. doi.org/10.1016/j.matchemphys.2010.02.002.##
[33]. Doh, S. J., Kim, C., Lee, S. G., Lee, S. J., & Kim, H. (2008). Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. Journal of Hazardous Materials, 154(1-3), 118-127. doi.org/10.1016/j.jhazmat.2007.09.118.##
[34]. Choi, S. K., Kim, S., Lim, S. K., & Park, H. (2010). Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: effects of mesoporosity and interparticle charge transfer. The Journal of Physical Chemistry C, 114(39), 16475-16480. doi.org/10.1021/jp104317x.##
[35]. Quang, D. A., Toan, T. T. T., Tung, T. Q., Hoa, T. T., Mau, T. X., & Khieu, D. Q. (2018). Synthesis of CeO2/TiO2 nanotubes and heterogeneous photocatalytic degradation of methylene blue. Journal of Environmental Chemical Engineering, 6(5), 5999-6011. doi.org/10.1016/j.jece.2018.09.022.##
[36]. Ong, W. J., Tan, L. L., Chai, S. P., Yong, S. T., & Mohamed, A. R. (2014). Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale, 6(4), 1946-2008. doi.org/10.1039/C3NR04655A.##
[37]. Chong, M. N., Jin, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Research, 44(10), 2997-3027. doi.org/10.1016/j.watres.2010.02.039.##
[38]. Barakat, N. A., Erfan, N. A., Mohammed, A. A., & Mohamed, S. E. (2020). Ag-decorated TiO2 nanofibers as Arrhenius equation-incompatible and effective photocatalyst for water splitting under visible light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604, 125307. doi.org/10.1016/j.colsurfa.2020.125307.##
[39]. Tai, C., Zhang, Z., Ji, X. Y., Ma, J., Han, X., Wang, R., Lu, Q., Wei, M., Si, C., Chen, S., & Guo, E. (2024). Ternary heterojunction of 1D CeO2/TiO2 nanofibers decorated with In2S3 nanosheets boosting the photodegradation of organic pollutants. Surfaces and Interfaces, 104177. doi.org/10.1016/j.surfin.2024.104177.##
[40]. Amini, A., Rahmani, F., Kkamforoush, M., & Sene, R. A. (2023). Bentonite nanoparticles-incorporated ZnO nanofiber mats assembly by electro-centrifuge spinning for efficient photo-degradation of bentazon herbicide: Tuning composition and process optimization. Journal of Cleaner Production, 137652. doi.org/10.1016/j.jclepro.2023.137652.##
[41]. Lin, L., Jiang, W., Bechelany, M., Nasr, M., Jarvis, J., Schaub, T., Sapkota, R.R., Miele, P., Wang, H., & Xu, P. (2019). Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: Degradation products and mechanisms. Chemosphere, 220, 921-929. doi.org/10.1016/j.chemosphere.2018.12.184.##
[42]. Cao, T., Li, Y., Wang, C., Wei, L., Shao, C., & Liu, Y. (2010). Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nanofibers heterostructures. Materials Research Bulletin, 45(10), 1406-1412. doi.org/10.1016/j.materresbull.2010.06.043.##
[43]. Vieira, G. B., José, H. J., Peterson, M., Baldissarelli, V. Z., Alvarez, P., & Moreira, R. d. F. P. M. (2018). CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 353, 325-336. doi.org/10.1016/j.jphotochem.2017.11.045.##
[44]. Radić, N., Grbić, B., Stojadinović, S., Ilić, M., Došen, O., & Stefanov, P. (2022). TiO2–CeO2 composite coatings for photocatalytic degradation of chloropesticide and organic dye. Journal of Materials Science: Materials in Electronics, 33(8), 5073-5086.##
[45]. Janani, F.Z., Khiar, H., Taoufik, N., Elhalil, A., Sadiq, M., Puga, A.V., Mansouri, S. and Barka, N. (2021). ZnO–Al2O3–CeO2–Ce2O3 mixed metal oxides as a promising photocatalyst for methyl orange photocatalytic degradation. Materials Today Chemistry, 21, 100495. doi.org/10.1016/j.mtchem.2021.100495.##
[46]. Yengejeh, S. M., Allahyari, S., & Rahemi, N. (2020). Efficient oxidative desulfurization of model fuel by visible-light-driven MoS2-CeO2/SiO2-Al2O3 nano photocatalyst coating. Process Safety and Environmental Protection, 143, 25-35. doi.org/10.1016/j.psep.2020.05.042.##
[47]. Neves, T. M., Frantz, T. S., do Schenque, E. C. C., Gelesky, M. A., & Mortola, V. B. (2017). An investigation into an alternative photocatalyst based on CeO2/Al2O3 in dye degradation. Environmental Technology & Innovation, 8, 349-359. doi.org/10.1016/j.eti.2017.08.003.##
[48]. Ezati, F., Sepehr, E., & Ahmadi, F. (2021). The efficiency of nano-TiO2 and γ-Al2O3 in copper removal from aqueous solution by characterization and adsorption study. Scientific Reports, 11(1), 18831.##
[49]. Yu, C., Wang, S., Zhang, K., Li, M., Gao, H., Zhang, J., Yang, H., Hu, L., Jagadeesha, A.V., & Li, D. (2023). Visible-light-enhanced photocatalytic activity of BaTiO3/γ-Al2O3 composite photocatalysts for photodegradation of tetracycline hydrochloride. Optical Materials, 135, 113364. doi.org/10.1016/j.optmat.2022.113364.##
[50]. Rahmani, F., Haghighi, M., & Estifaee, P. (2014). Synthesis and characterization of Pt/Al2O3–CeO2 nanocatalyst used for toluene abatement from waste gas streams at low temperature: Conventional vs. plasma–ultrasound hybrid synthesis methods. Microporous and Mesoporous Materials, 185, 213-223. doi.org/10.1016/j.micromeso.2013.11.019.##
[51]. Al Farraj, D. A., Al-Mohaimeed, A. M., Alkufeidy, R. M., & Alkubaisi, N. A. (2021). Facile synthesis and characterization of CeO2-Al2O3 nano-heterostructure for enhanced visible-light photocatalysis and bactericidal applications. Colloid and Interface Science Communications, 41, 100375. doi.org/10.1016/j.colcom.2021.100375.##
[52]. Chen, W. J., Hsu, K. C., Fang, T. H., Lee, C. I., Chen, T. H., & Hsieh, T. H. (2021). Structural, optical characterization and photocatalytic behavior of Ag/TiO2 nanofibers. Dig J Nanomater Bios, 16, 1227.##
[53]. Feng, C., Zhang, L., & Cheng, Z. (2020). Preparation of Spry‐Liked CdS‐TiO2 One‐Dimensional Composite Nanomaterial and Its Photocatalytic Degradation Efficiency. ChemistrySelect, 5(7), 2142-2147.##
[54]. Shafique, M., Mahr, M. S., Yaseen, M., & Bhatti, H. N. (2022). CQD/TiO2 nanocomposite photocatalyst for efficient visible light-driven purification of wastewater containing methyl orange dye. Materials Chemistry and Physics, 278, 125583. doi.org/10.1016/j.matchemphys.2021.125583.##
[55]. Kader, S., Al-Mamun, M. R., Suhan, M. B. K., Shuchi, S. B., & Islam, M. S. (2022). Enhanced photodegradation of methyl orange dye under UV irradiation using MoO3 and Ag doped TiO2 photocatalysts. Environmental Technology & Innovation, 27, 102476. doi.org/10.1016/j.eti.2022.102476.##
[56]. Razavi, F. S., Ghanbari, D., Dawi, E. A., & Salavati-Niasari, M. (2023). Electrospun bimetallic Au–Pt/TiO2/BaFe12O19 nanofibers as promising photocatalysts driven by visible light: synthesis and characterization. Journal of Science: Advanced Materials and Devices, 8(2), 100559.doi: 10.1016/j.jsamd.2023.100559.##
[57]. Tai, C., Zhang, Z., Ji, X.Y., Ma, J., Han, X., Wang, R., Lu, Q., Wei, M., Si, C., Chen, S. & Guo, E. (2024). Ternary heterojunction of 1D CeO2/TiO2 nanofibers decorated with In2S3 nanosheets boosting the photodegradation of organic pollutants. Surfaces and Interfaces, 104177. doi.org/10.1016/j.surfin.2024.104177.##