شبیه‌سازی هیدرودینامیکی و انتقال حرارت رآکتورهای تبدیل کاتالیستی با استفاده از دینامیک سیالات محاسباتی

نوع مقاله: مقاله پژوهشی

نویسندگان

پژوهشگاه صنعت نفت، پژوهشکده مهندسی توسعه فرآیند و فناوری تجهیزات، گروه پژوهش توسعه و کنترل فرآیندها

چکیده

دراین پژوهش شبیه‌سازی هیدرودینامیکی و انتقال حرارت رآکتورهای واحد تبدیل کاتالیستی به کمک دینامیک سیالات محاسباتی انجام شده است. معادلات بقای جرم، ممنتوم و انرژی به همراه معادلات اغتشاش به طور همزمان در المان‌های حجم محدود سیستم حل شده ‌است. توزیع زمان اقامت سیال در این رآکتورها با استفاده از تکنیک تزریق پله‌ای ردیاب در ورودی به دست آمده ‌است. پارامتر پراکندگی جریان در هر سه رآکتور تحت بررسی محاسبه و گزارش شده ‌است. تصحیحات ساختاری قابل قبول در سیستم جهت رسیدن به شرایط جریانی مناسب و افزایش ظرفیت انجام شده است. مشخص شد که افزایش ظرفیت در ورودی و افزایش مقاومت‌های توزیع کننده‌های جریان، به بهبود یکنواختی جریان، کمک می‌کند. به منظور در نظر گرفتن گرمای تولید یا مصرف شده در ناحیه متخلخل حاوی کاتالیست که در آن واکنش‌های شیمیایی زیادی به وقوع می‌پیوندد، ترم‌های منابع چشمه یا چاه حرارتی در معادله انرژی جایگزین شده ‌است. نتایج نشان می‌دهد که عمده افت دما در اولین راکتور اتفاق می‌افتد. در ادامه با تعویض شرایط عایق پوسته راکتورها، شرایط حرارتی سیستم بررسی شده‌اند. استفاده از عایقی با ضخامت دو برابر عایق کنونی یا عایقی با ضریب هدایت حرارتی کمتر (W/m. K 06/0) تقریباً معادل هم می‌باشد که هر یک به نوبه خود اتلاف حرارتی از سیستم را کمتر می‌کند
 

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Hydrodynamic and Heat Transfer Phenomena in Catalytic Reforming Reactors via CFD

نویسندگان [English]

  • Rasoul Mohammadikhah
  • Soroud Zahedi Abghari
  • Mehdi AhmadiMarvast
  • Hamid Ganji
Modeling and Process Control Department, Engineering and Process Development Division, Research Institute of Petroleum Industry, (RIPI)
چکیده [English]

The simulation of hydrodynamic and heat transfer phenomena in a catalytic reforming reactor is performed with the help of computational fluid dynamics. The governing equations of mass, momentum, and energy conservation are simultaneously solved together with turbulence equations through finite volume elements. The residence time distribution of each reactor is obtained using step tracer injection technique. Dispersion parameter for every reactor is evaluated and reported. By modifying geometry and reactor internals, we are successful to gain uniform flow distribution and to enhance the reactor capacity. It is found that capacity enhancement and an increase in the resistance of fluid distributors can improve uniformity. To take into account the amount of heat generated or consumed by the catalytic reactions, some volumetric heat sources are defined in the energy equation. The results show that the majority of temperature fall occurs through the first reactor because of endothermic rigorous reactions. It is also found out that heat dissipation decreases up to 35%, if the insulation thickness increases twofold.
 

کلیدواژه‌ها [English]

  • Catalytic Reforming
  • Hydrodynamics
  • RTD
  • Heat Transfer
  • Turbulence
  • CFD
[1]. Padmavathi G. and Chaudhuri K. K., “Modeling and simulation of commercial catalytic naphtha reformers”, Can. J. Chem. Eng., Vol. 75, No. 10, pp. 930-937, 1997.

[2]. Smith R. B., “Kinetic analysis of naphtha reforming with platinum catalyst”, Chem. Eng. Prog., Vol. 55, No. 6, pp. 76-80, 1959.

[2]. Fazeli A., Fatemi Sh., Mahdavian M. and Ghaee A., “Mathematical modeling of an industrial naphtha reformer with three adiabatic reactors in series”, Iran. J. Chem. Chem. Eng., Vol. 28, No. 3, 97-102, 2009.

[3]. Zafar Q., Gevert B. and Von Sivers M., “Statistical model for benzene prediction in catalytic reforming”, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., Vol. 48, No. 2, 660-661, 2003.

[4]. Arani H. M., Shirvani M., Safdarian K. and Dorostkar E., “Lumping procedure for kinetic model of catalytic naphtha reforming”, Braz. J. Chem. Eng., Vol. 26, No. 4, 723-732, 2009.

[5]. Weifeng H., Hongye S., Yongyou H. and Jian C., “Modeling, Simulation and optimization of a whole industrial catalytic naphtha reforming process on Aspen Plus platform”, Chinese. J. Chem. Eng., Vol. 14, No. 5, 584-591, 2006.

[6]. Mohammadikhah R., Ziyari A., Behjat Y., Ahmadi-Marvast M., Ayazi M. and Nikbakht M., Removing mal-distribution through a radial-flow fixed bed reactor using CFD, 6th Int. Chem. Eng. Cong., 16-20 November, Kish Island, Iran, 2009.

[7]. Mohammadikhah R., Behjat Y., Ahmadi-Marvast M. and Nikbakht M, Ganji H., CFD application in capacity enhancement of naphtha catalytic reforming unit of Tehran refinery, 14th Int. Oil. Gas. Petro. Cong., 19-20 may, Tehran, Iran, 2010.

[8]. Ranade V. V., “Computational flow modeling for chemical reactor engineering”, Vol. 5, Academic Press., London, UK, 2002.

[9] محمدیخواه ر.، گنجی ح.، احمدی مروست م.، زاهدی س.، حمزوی ا.، دهقانی ا.، بررسی اثر تغییر و توزیع تخلخل بر روی هیدرودینامیک رآکتورهای صنعتی تبدیل کاتالیستی پالایشگاه تهران، سومین کنفرانس ملی کاربرد CFD در صنایع شیمیایی و نفت، دانشگاه علم و صنعت ایران، ایران، 1390.

[10]. Mohammadikhah R., Ganji H., Ahmadi-Marvast M. and Zahedi Abghari S., “Turbulence model inspection for hydrodynamics of naphtha catalytic reactors”, 7th International Chemical Engineering Congress & Exihibition, 21-24 November, Kish Island, Iran, 2011.

[11]. Mohammadikhah R., Zahedi Abghari S., Ahmadi-Marvast M. and Ganji H., CFD simulation of catalytic naphtha reforming process, 7th International Chemical Engineering Congress & Exihibition, 21-24 November, Kish Island, Iran, 2011.

[12]. K.A. Hoffmann, S.T. Chiang, Computational fluid dynamics, 4th Ed, Engineering Education SystemTM, Wichita, USA, 2000.

[13]. FLUENT.6.3 User's Guide, FLUENT. Inc, USA, 2006.

[14]. Levenspiel O., Chemical reaction engineering, 2nd Ed, Wiley & Sons, New York, 1972.

[15]. Library of Tehran Refinery, Unifiner-Platformer manual: PFD No. RD-2-002, RD-202-4251, RD-202-4252, RD-203-4253, 2009.

[16]. ANH Refractories Europe Ltd, www.anheurope.co.uk, 22.2.2010.

[17]. Nayyar I., Mohinder L., Piping Handbook, 7th Ed, Mc Graw Hill, New York, 2000.

[18] Reid R. C., Prausnitz J. M., and Sherwood T. K, The properties of gases and liquids, 3rd Ed., Mc Graw-Hill Inc., pp.108-109, 1977.

[19]. Perry R. H. and Green D. W., Perry’s chemical engineering handbook, 7th Ed, Mc Graw-Hill Inc., New York, 1997.

[20]. Stijepovic M. Z., Ostojic A. V., Milenkovic I. and Linke P., “Development of a kinetic model for catalytic reforming of naphtha and parameter estimation using industrial plant data”, Energy & Fuel. J., Vol. 23, No. 6, pp.979-983, 2009.

[21]. Taskar U., Modeling and optimization of a catalytic naphtha reformer, Ph.D. Thesis, Texas Tech. University, USA, 1996.