مطالعه اثر مونت موریلونیت بر سینتیک پلیمریزاسیون رادیکالی انتقال اتم در محیط مینی امولسیون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی امیرکبیر، دانشکده مهندسی شیمی

2 دانشکده مهندسی پلیمر دانشگاه صنعتی امیرکبیر

3 دانشگاه صنعتی امیرکبیر، دانشکده مهندسی پلیمر

چکیده

نانوکامپوزیت پلی (‌استایرن- بوتیل‌اکریلات)/ خاک رس با روش پلیمریزاسیون رادیکالی انتقال اتم درجا با استفاده از شروع کننده تولید‌شده از طریق انتقال الکترون (AGET ATRP) سنتز شد. ترکیب شیمیایی نمونه‌ها با روش طیف‌بینی مادون قرمز (FT-IR) شناسایی گردید. متوسط عددی و وزنی وزن مولکولی پلیمرهای حاصل و توزیع آنها با روش کروماتوگرافی ژل‌تراوایی (GPC) تعیین شد. شاخص پراکندگی پلیمرها کمتر از 2/1 بود. اثر نانولایه‌های خاک رس بر روی سینتیک پلیمریزاسیون رادیکالی انتقال اتم به کمک نمودار سینتیکی ([ln ([M0]/[M در مقابل زمان و کنترل سیستم به کمک نمودار تغییرات وزن مولکولی در مقابل تبدیل منومر بررسی شد. همه نتایج نشان‌دهنده زنده و کنترل‌شده بودن واکنش AGET ATRP در محیط مینی‌امولسیون می‌باشد. نانوذرات خاک رس باعث کاهش سرعت پلیمریزاسیون گردید که به علت اثر مانع‌شدن نانولایه‌های خاک رس در نفوذ منومرها به سمت ماکرورادیکال در حال رشد است.

کلیدواژه‌ها


عنوان مقاله [English]

A Study of Montmorillonite Effect on Atom Transfer Radical Polymerization Kinetics in a Miniemulsion Medium

نویسندگان [English]

  • Leila Hatami 1
  • Vahid Haddadi Asl 2
  • Leila Ahmadian Alam 1
  • Hossein Roghani Mamaqani 3
  • Mehdi Salami Kalajahi 3
1 Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
2 Department of Polymer Engineering and Color Technology, Amirkabir University of Technoloy
3 Department of Polymer Engineering and Color Technology, Amirkabir University of Technology
چکیده [English]

Poly (styrene-butyl acrylate)/clay nanocomposite was synthesized by activators generated by electron transfer (AGET) for atom transfer radical polymerization (ATRP). The chemical composition of the samples was studied by infra red-Furier transformation (FT-IR) spectroscopy. Number- and weight-average molecular weights of the resultant copolymer nanocomposites and their molecular weight distributions were determined by gel permeation chromatography (GPC). The polydispersity index of the nanocomposites were lower than 1.2. The effect of the nanoclay layers on the kinetics of ATRP was investigated by using a plot of ln ([M0]/[M]) versus time of the reaction and also control over the polymerization was investigated by linear relation between number-average molecular weight and monomer conversion. All of the studies confirmed the controlled/living characteristics of the AGET ATRP in the miniemulsion medium. Because of the hindrance effect of the nanoclay layers on the diffusion of the monomers toward the growing macroradicals, the rate of the polymerization decreased.

کلیدواژه‌ها [English]

  • Kinetics
  • Control
  • ATRP
  • Nanocomposite
  • Miniemulsion
[1]. Najafi M., Salami-Kalajahi M., and Haddadi-Asl V., Controlled/ Living Radical Polymerization, Petrochemical Research and Technology Company publications, Tehran, 2005.
[2]. Braunecker W. A., and Matyjaszewski K., “Controlled/Living Radical Polymerization: Features, Developments, and Perspectives”, Prog. Polym. Sci.,Vol 94, pp. 93–146, 2007.
[3]. Georges M. K., Veregin R. P. N., Kazmaier P. M., and Hamer G. K., “Narrow molecular weight resins by a free-radical polymerization process”, Macromolecules, Vol 26, pp. 2987, 1993.
[4]. Najafi M., Roghani-Mamaqani H., Salami-Kalajahi M., and Haddadi-Asl V., “Study of Styrene Atom Transfer Radical Polymerization Kineics in the Presence of Nanoclay Layers”, Chin. J. Polym. Sci., Vol 28, pp. 483-497, 2010.
[5]. Chiefari J., Chong Y. K., Ercole F., Krstina J., Jeffery J., Le T. P. T., Mayadunne R. T. A., Meijs G. F., Moad C. L., Moad G., Rizzardo E., and Thang S. H., “Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process”, Macromolecules, Vol 31, pp. 5559-5562, 1998.
[6]. Nicolay V., and Matyjaszewski K., “Green” Atom Transfer Radical Polymerization: From Process Design to Preparation of Well-Defined Environmentally Friendly Polymeric Material”, Chem. Rev. Vol 107, pp. 2270-2299, 2007.
[7]. Morgan A. B., Chu L. L., and Harris J. D., “A Flammability Performance Comparison Between Synthetic and Natural Clays in Polystyrene Nanocomposites”, Fire. Mater. Vol 29, pp. 213–229, 2005.
[8]. Ray S. S., and Okamoto M., “Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing”, Prog. Polym. Sci., Vol 28, pp. 1539–1641, 2003.
[9]. Nazarenko S., Meneghetti P., Julmon P., Olson B. G., and Qutubuddin S., “Gas Barrier of Polystyrene Montmorillonite Clay Nanocomposites: Effect of Mineral Layer aggregation”, J. Polym. Sci: Part B: Polym. Phys., Vol 45, pp. 1733–1753, 2007.
[10]. Yeh J. M., Liou S. J., Lin C. Y., Cheng C. Y., and Chang Y. W., “Anticorrosively Enhanced PMMA−Clay Nanocomposite Materials with Quaternary Alkylphosphonium Salt as an Intercalating Agent”, Chem. Mater., Vol 14, pp.154. 2002.
[11]. Nikolaidis A. K., Achilias D. S., and Karayannidis G. P., “Synthesis and Characterization of PMMA/Organomodified Montmorillonite Nanocomposites Prepared by in Situ Bulk Polymerization, Ind. Eng. Chem. Res., In press”, Vol. 50, pp. 571-579, 2010.
[12]. Hatami L., Haddadi-Asl V., Roghani-Mamaqani H., Ahmadian-Alam L., and Salami-Kalajahi M., “Synthesis and Characterization of Poly(Styrene-co-Butyl Acrylate)/
Clay Nanocomposite Latexes in Miniemulsion by AGET ATRP”, Polymer Composites, Vol 32, pp. 967-975, 2011.
[13]. Ahmadian L., Haddadi-Asl V., Roghani-Mamaqani H., Hatami L., Salami-Kalajahi M., “Use of Clay-Anchored Reactive Modifier for the Synthesis of Poly(styrene-co-butyl acrylate)/Clay Nanocomposite via In Situ AGET ATRP”, Journal of Polymer Research, Vol 19, pp. 9773-9785, 2012.
[14]. احمدیان علم ل.، حدادی اصل و.، روغنی ممقانی ح.، حاتمی ل.، سلامی کلجاهی م.، «سنتز نانوکامپوزیت پلی(استایرن- کو- بوتیل‌آکریلات) به روش پلیمریزاسیون رادیکالی انتقال اتم درجا از طریق فعال‌کننده تولیدشده با انتقال الکترون»، مجله علمی پژوهشی علوم و تکنولوژی پلیمر، سال 24، شماره 2، 101-112، خرداد- تیر 1390.
[15]. Sun Q., Deng Y., and Wan Z. L., “Synthesis and Characterization of Polystyrene-Encapsulated Laponite Composites via Miniemulsion Polymerization”, Macromol. Mater. Eng., vol 289, pp. 288–295, 2004.
[16]. Tong Z., and Deng Y., “Kinetics of Miniemulsion Polymerization of Styrene in the Presence of Organoclays, Macromol”, Mater. Eng., Vol 293, pp. 529–537, 2008.
[17]. Diaconu G., Paulis M., and Leiza J. R., “High Solids Content Waterborne Acrylic/Montmorillonite Nanocomposites by Miniemulsion Polymerization”, Macromol. React. Eng., Vol 2, pp. 80–89, 2008.
[18]. Bourgeat-Lami E., “Organic/Inorganic Nanocomposite Colloids, Encyclopedia of Nanoscience and Nanotechnology”, Edited by Nalwa HS., Vol 8, pp. 305–332, 2004.
[19]. Wu Y., Zhang Y., Xu J., Chen M., and Wu L., “One-step Preparation of PS/TiO2 Nanocomposite Particles Via Miniemulsion Polymerization”, J. Colloid. Interface. Sci., Vol 343, pp. 18–24. 2010.
[20]. Diaconu G., Asua J. M., Paulis M., and Leiza J. R., “High-Solids Content Waterborne Polymer-Clay Nanocomposites”, Macromol. Symp., Vol 259, pp. 305–317, 2007.
[21] Qin D., Qin S., and Qiu K., “Living/Controlled Radical Polymerization of Styrene with a New Initiating System: DCDPS/FeCl3/PPh3”, J. Polym. Sci.: Part A: Polym. Chem., Vol 38, pp. 101–107, 2000.
[22]. Sarbu T., Pintauer T., Mckenzie B., and Matyjaszewski K., “Atom Transfer Radical Polymerization of Styrene in Toluene/Water Mixtures”, J. Polym. Sci.: Part A: Polym. Chem., Vol 40, pp. 3153–3160, 2002.
[23]. Peng H., Cheng S., Feng L., and Fan Z., “Atom Transfer Radical Polymerization of n-Butyl Methacrylate in an Aqueous Dispersed System”, J. App. Polym. Sci., Vol 89, pp. 3175–3179, 2003.
[24]. Min K., and Matyjaszewski K., “Atom Transfer Radical Polymerization in Microemulsion, Macromolecule”, Vol 38, pp. 8131-8134, 2005.
[25]. Li M., Min K., and Matyjaszewski K., “ATRP in Waterborne Miniemulsion via a Simultaneous Reverse and Normal Initiation Process”, Macromolecules, Vol 37, pp. 2106-2112, 2004.
[26]. Min K., Jakubowski W., and Matyjaszewski K., “AGET ATRP in the Presence of Air in Miniemulsion and in Bulk”, Macromol. Rapid. Comm.,Vol 27, pp. 594–598, 2006.
[27]. Samakande A., Sanderson R. D., and Hartmann P. C., “Encapsulated Clay Particles in Polystyrene by RAFT Mediated Miniemulsion Polymerization”, J. Polym. Sci: Part A: Polym. Chem., Vol 46, pp. 7114–7126, 2008.
[28]. Wu Y., Zhang J., and Zhao H., “Functional Colloidal Particles Stabilized by Layered Silicate with Hydrophilic
Face and Hydrophobic Polymer Brushes”, J. Polym. Sci: Part A: Polym. Chem., Vol 47, pp. 1535–1543, 2009.
[29]. Zhao H., and Shipp D. A., “Preparation of Poly (styrene-block-butyl acrylate) Block copolymer-Silicate Nano
composites
”, Chem. Mater., Vol 15, pp. 2693–2695, 2003.[30]. Haimanti D., Nikhil S., and Anil B., “Beneficial Effect of Nanoclay in Atom Transfer Radical Polymerization of Ethyl Acrylate: A One Pot Preparation of Tailor-Made Polymer Nanocomposite”, Macromolecules, Vol 41, pp. 50-57, 2008.
[31]. Roghani-Mamaqani H., Najafi M., Haddadi-Asl V., and Salami-Kalajahi M., “Preparation of Polystyrene Nano composite by In Situ Atom Transfer Radical Polymerization: Study of Polymerization Kinetics in the Presence of Clay”, Iranian Journal of Polymer Science and Technology, Vol 22, No. 4, pp. 261-272, 2009.
[32]. Li W., Min K., Matyjaszewski K., Stoffelbach F., and Charleux B., “PEO-Based Block Copolymers and Homopolymers as Reactive Surfactants for AGET ATRP of Butyl Acrylate in Miniemulsion”, Macromolecules, Vol 41, pp. 6387-6392, 2008.
[33]. Hatami L., Haddadi-Asl V., Roghani-Mamaqani H., Ahmadian-Alam L., and Salami-Kalajahi M., “Poly(styrene-co-butyl acrylate)/Clay Nanocomposite Latexes Synthesized via In Situ Atom Transfer Radical Polymerization in Miniemulsion: Activators Generated by Electron Transfer Approach”,Vol. 24, pp. 55-67, 2011.
[34]. Solomon D. H., “Clay Minerals as Eletron Acceptors and/or Electron Donors in Organic Reactions”, Clays and Clay Minerals, Vol. 16, pp. 31-39, 1968.
[35]. Roghani-Mamaqani H., Haddadi-Asl V., Najafi M., and Salami-Kalajahi M., Preparation of Tailor-Made Polystyrene Nanocomposite with Mixed Clay-Anchored and Free Chains via Atom Transfer Radical Polymerization, AICHE, DOI 10.1002/aic.12395, 2010.
[36]. Zhang H., and Linde R., “Atom Transfer Radical Polymerization of n-Butyl Acrylate Catalyzed by CuBr/N-(n-Hexyl)-2-pyridylmethanimine”, J. Polym. Sci.: Part A: Polym. Chem., Vol 40, pp. 3549–3561, 2002.
[37]. Stoffelbach F., Belardi B., Santos J., M. Tessier L., Matyjaszewski K., and Charleux B., “Use of an Amphiphilic Block Copolymer as a Stabilizer and a Macroinitiator in Miniemulsion Polymerization under AGET ATRP Conditions”, Macromolecule, Vol 40, pp. 8813-8816, 2007.
[38]. Robert D., and Athey, J. R., Emulsion Polymer Tehnology, New York, Marcel Dekker Inc, 1991.
[39]. Haddadi-Asl V., Polymerization Reactions, Amir Kabir University of Technology, Tehran, 2006.
[40]. Sun X., Luo Y., Wang R., Li B. G., Liu B., and Zhu S., “Programmed Synthesis of Copolymer with Controlled Chain Composition Distribution via Semibatch RAFT Copolymerization”, Macromolecule, Vol 40, pp. 849-859, 2007.
[41]. Kostanski L. K., and Hamielec A. E., “Influence of Temperature on Butyl acrylate-Styrene Copolymerization Parameters”, Polymer, Vol 33, pp. 3706-3710, 1992.