مدل‌سازی پیوسته شکستگی در مخازن کربناته با تلفیق داده‌های لرزه‌ای، زمین‌شناسی و پتروفیزیکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده معدن، پردیس دانشکده‌های فنی، دانشگاه تهران

2 مدیریت اکتشاف، تهران

چکیده

شکستگی یکی از مهم‌ترین پدیده‌های زمین‌شناسی است که تولید از مخازن کربناته شکسته را تحت تاثیر قرار می‌دهد. توزیع شکستگی در مخازن شکسته به عوامل ساختاری، سنگ شناسی، ضخامت مخزن، گسل‌ها و عوامل کنترل کننده دیگر بستگی دارد. برای مدل‌سازی دقیق شکستگی‌ها باید عوامل کنترل کننده شکستگی را با داده‌های چاه تلفیق کرد. در این مقاله از تراکم شکستگی حاصل از تحلیل شکستگی‌های مغزه های سه چاه از میدان مارون استفاده شده است. نشان‌گرهای لرزه‌ای مرتبط با شکستگی از جمله فرکانس لحظه‌ای، انحنا و شیب از داده‌های لرزه ای استخراج شده است. عوامل زمین‌شناسی و پتروفیزیکی که تراکم شکستگی را کنترل می‌کند با تلفیق داده‌های لرزه‌ای و چاه‌ها به صورت سه بعدی مدل شده است. با تلفیق عوامل کنترل کننده شکستگی و تراکم شکستگی در چاه‌ها، تراکم شکستگی به صورت سه بعدی با استفاده از روش شبکه عصبی مدل شد و ضریب همبستگی آن با داده‌های چاه 82/0 به دست ‌آمد. مدل پیوسته شکستگی حاصل از شبکه عصبی، با نقشه انتقال‌پذیری هم‌خوانی داشته و نقشه انتقال‌پذیری، بالا بودن تراکم شکستگی در یال جنوبی را تایید می‌کند. بیشترین تراکم شکستگی در یال جنوبی تاقدیس قرار دارد که مکان مناسبی برای توسعه میدان می‌باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Continuous Fracture Modeling in Carbonate Reservoir by Integration of Seismic, Geological, and Petrophysical Data

نویسندگان [English]

  • Ali Akbar Bayat 1
  • Omid Asghari 1
  • Abbas Bahroudi 1
  • Meysam Tavakkoli 2
1 Mining Faculty, College of Engineering, University of Tehran
2 Exploration Directorate Company, Tehran
چکیده [English]

Large percentages of world hydrocarbon reservoirs are fractured reservoir and fracture distribution in these reservoirs are not distributed randomly. Fracture distribution in fractured reservoir depends on the combination of structures, lithology, reservoir thickness, fault, and other fracture controllers. For accurate fracture modeling, these factors should be integrated with well data. For this purpose, fracture density of three wells in Marun oil field is used. Fracture related seismic attributes such as instantaneous frequency, curvature, and dip is extracted from seismic data. Geological and petrophysical features, which control fracture density, are modeled by the integration of seismic and well data. By the integration of these factors and fracture density in wells, fracture density is modeled by artificial neural network. In this study, the continuous fracture model is properly modeled and the results demonstrate 82% correlation with well data. This continuous fracture model has a relatively good relation with transmissibility map and the transmissibility map satisfies high fracture density in the south limb of anticline. Most fracture densities are located in the southern limb of anticline and this seems to be suitable region for field development.
 

کلیدواژه‌ها [English]

  • Fracture Density
  • Fracture Controllers
  • seismic attributes
  • Petrophysical Logs
[1]. Ouenes A., “Practical application of fuzzy logic and neural networks to fractured reservoir characterization,” Computer and Geoscience, Vol. 26, pp. 953-962, 2000.##

[2]. Zellou A. M. and Ouenes A., “Integrated fractured reservoir characterization using neural networks and fuzzy logic: three case studies,” Journal of Petroleum Geology, pp. 459-476, 2001.##

[3] Wong P. M., “Ranking geological drivers for mapping fracture intensity at the Pinedale anticline,” EAGE, 65th Conference and Exhibition, Norway, 2003.##

[4]. Jenkins C., Ouenes A., Zellou A., and Wingard J., “Quantifying and predicting naturally fractured reservoir behavior with continuous fracture models,” AAPG Bulletin, Vol. 93, No. 11, pp. 1597-1608, 2009.##

[5]. Ouenes “Mapping natural fractures using 3D seismic and well data: Application to a shale play,” Prism Seismic, 2010.##

[6]. Mai H. T., “Seismic attribute analysis and its application to mapping folds and fractures,” PhD Thesis, Univer sity of Oklahoma, Oklahoma, USA, 2010.##

[7]. Nelson R. A., “Geologic analysis of naturally fractured reservoirs, gulf professional,” Houston, USA, 2001.##

[8]. Klepacki D., “Seismically driven characterization and simulation of the fractured ten sleep reservoir at teapot dome for CO2 injection design,” DGS 3D Symposium-Denver, 2010.##

[9]. MCcord D. R., & Associates, “Fracture study of reservoirs report,” No. Ep- 47147, Prepared for Osco, 1974.##

[10]. Stat Oil Marun Asmari Full Field Study, 2003.##

[11]. Fertl W. H., “Evaluation of fractured reservoirs using geophysical well logs,” SPE Symposium on Conventional Gas Recovery, Paper no. 8938, Pittsburgh, Pennsylvania, 1980.##

[12]. Price N. J., “Fault and joint development in brittle and semi-brittle Rocks,” Pergamon, Oxford, 1966.##

[13]. Mavko C., “Rock physics constraints on seismic signatures of fractures,” Rock Physics Laboratory Stanford University, Contract number: DE-AC26-99FT40692 DOE, 2007.##

[14]. Schlumberger Company, Petrel Software Help, 2009.##