ساخت و تعیین مشخصات غشاء زئولیتی نانو ساختار ZSM-5

نوع مقاله: مقاله پژوهشی

چکیده

در تحقیق حاضر، غشاهای زئولیتی
ZSM-5 بر روی پایه α- آلومینا با استفاده از روش رشد ثانویه سنتز شدند. آزمایش‌های تعیین مشخصات ساختاری، شامل TGA، TEM، SEM، XRD DSC و تراوایی گاز خالص بر روی غشاهای ساخته شده صورت گرفت. برای ساخت غشاها، ابتدا نانو کریستال‌های سیلیکالیت-1 در اندازه متوسط nm 40 سنتز شدند و جهت جداسازی و خالص‌سازی آنها از محلول از چندین‌بار سانتریفوژ و التراسونیک متوالی استفاده شد. در ادامه، تأثیر شرایط مختلف سنتز نظیر میزان آلومینیوم و زمان سنتز بر روی مشخصات ساختاری نمونه‌های ساخته شده مورد مطالعه قرار گرفت. بررسی اثر غلظت آلومینیوم نشان داد که افزایش میزان آلومینیوم تا میزان مشخص موجب بهبود پوشش ایجاد شده بر سطح پایه و خواص جداسازی غشاء می‌گردد. توجه به تغییر زمان سنتز بر چگونگی پوشش غشاهای سیلیکالیت ساخته شده با روش رشد ثانویه نشان داد که بهترین پوشش در زمان سنتز هیدروترمال پس از 36 ساعت حاصل می‌شود. تراوایی گازهای خالص CH4 ،CO2 ،H2 و N2 بر روی پایه و غشاهای سنتز شده در محدوده فشار bar 4-1 مورد مطالعه قرار گرفت. میزان انتخاب‌پذیری ایده‌آل H2/CO2، H2/CH4 و H2/N2 در بهترین شرایط به ترتیب برابر با 8/3، 5/3 و 4/4 در دمای K 300 به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and ‍‍Characterization of ZSM-5 Nano Structure Zeolite Membrane

چکیده [English]

In the present study, ZSM-5 zeolite membranes were synthesized on porous α-alumina support by secondary growth hydrothermal method. Membranes synthesized were tested by structural characterization and single gas permeation experiments. To prepare zeolite membranes, nanosized silicalite-1 powder was first synthesized as seed with mean diameter of 40 nm from a clear solution. Silicalite nanoparticle slurries were purified by repeated centrifugation followed by redispersion by ultra-sound in deionized water. The effects of synthetic parameters such as synthesis time and aluminum content are studied. It was found that the membranes quality was sensitive to the aluminum content. Investigation of different synthesis times showed that the best film was obtained during 36 hours. The permeation properties of the support and membranes were measured over the pressure range of 1-4bar at room temperature. The ZSM-5 membranes were examined by permeation measurements using single CO2, N2, CH4 and H2 gases. Under optimum synthetic conditions, the permselectivity at 300K for H2/CH4, H2/CO2 and H2/N2 were 3.8, 3.5 and 4.4, respectively.

کلیدواژه‌ها [English]

  • ZSM-5
  • Zeolite Membrane
  • Secondary Growth
  • Nanosilicalite-1
  • Characterization
  • Single Gas Permeation
منابع

[1] Burggraaf A.J., Vroon Z.A.E.P., Keizer K. & Verweij H., “Permeation of single gases in thin zeolite MFI membranes”, J. Membr. Sci., Vol. 144, pp. 77-86, 1998.

[2] Li S., Falconer J.L. & Noble R.D., “SAPO-34 membrane for CO2/CH4 separations: effect of Si/Al ratio”, J. Microporous Mesoporous Mater., Vol. 110, pp. 310-317, 2008.

[3] Čejka J., Bekkum H.V. & Schüth F., Introduction to zeolite science and practice, 3th Ed., Elsevier, 2007.

[4] Sommer S., Melin T., Falconer J.L. & Noble R.D., “Transport of C6 isomers through ZSM-5 zeolite membranes”, J. Membr. Sci., Vol. 224, pp. 51-68, 2003.

5] Aoki K., Tuan V.A., Falconer J.L. & Noble R.D., “Gas permeation properties of ion-exchanged ZSM-5 zeolite membrane”, J. Microporous Mesoporous Mater., Vol. 39, pp. 485-492, 2000.

[6] Schubert U. & Hüsing N., Synthesis of Inorganic Materials, 2th Ed., WIily-VCH., 2005.

[7] Au L.T.Y. & Yeung K.L., “An investigation of the relationship between microstructure and permeation properties of ZSM-5 membranes”, J. Membr. Sci., Vol. 194, pp. 33-55, 2001.

[8] Poshusta J.C., Noble R.D. & Falconer J.L., “Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes”, J. Membr. Sci., Vol. 160, pp. 115-125, 1999.

[9] Gopalakrishnan S., Yamaguchi T. & Nakao S., “Permeation properties of templated and template-free ZSM-5 membranes”, J. Membr. Sci., Vol. 274, pp. 102-107, 2006.

[10] Li G., Kikuchi E. & Matsukata M., “ZSM-5 zeolite membranes prepared from a clear template-free solution”, J. Microporous Mesoporous Mater., Vol. 60, pp. 225-235, 2003.

[11] Xu X., Bao Y., Song C., Yang W., Liu J. & Lin L., “Synthesis, characterization and single gas permeation properties of NaA zeolite membrane”, J. Membr. Sci., Vol. 249, pp. 51-64, 2005.

[12] Vroon Z.A.E.P., Keizer K., Burggraaf A.J. & Verweij H., “Preparation and characterization of thin zeolite MFI membranes on porous supports”, J. Membr. Sci., Vol. 144, pp. 65-76, 1998.

[13] Xiao W., Yang J., Lu J. & Wang J., “A novel method to synthesize high performance Silicalite-1 membrane”, J Sep. Purifi. Techno., Vol. 67, pp. 58-63, 2009.

[14] Mallada R. & Menéndez M., Inorganic membranes: synthesis, Characterization and Applications, Elsevier., 2008.

[15] Tang Z., Kim S-J., Gu X. & Dong J., “Microwave synthesis of MFI-type zeolite membranes by seeded secondary growth without the use of organic structure directing agents”, J. Microporous Mesoporous Mater., Vol. 118, pp. 224-231, 2009.

[16] Treacy M.M.J. & Higgins J.B., “Collection of simulated XRD powder patterns for zeolites”, Elsevier, 2001.

[17] Pakizeh M., Omidkhah M.R. & Zarringhalam A., “Synthesis and characterization of new silica membranes using template-sol-gel technology”, J. Hydrog Energy, Vol. 32, pp. 1825-1836, 2007.

[18] Leung Y.L.A., Yeung K.L., “Microfabricated ZSM-5 zeolite micromembranes”, J. Chem. Eng. Sci., Vol. 59, pp. 4809-4817, 2004.

[19] Cheng Y., Li J.S., Wang L.J., Sun X.Y., Liu X.D., “Synthesis and characterization of Ce-ZSM-5 zeolite membranes”, J. Sep. Purifi. Technol., Vol. 51, pp. 210-218, 2006.

[20] Bonhomme F., Welk M., Nenoff T., “CO2 selectivity and lifetimes of high silica ZSM-5 membranes”, J. Microporous Mesoporous Mater., Vol. 66, pp. 181-188, 2003.

[21] Algieri C., Bernardo P., Golemme G., Barbieri G., Drioli E., “Permeation properties of a thin Silicalite-1 (MFI) membrane”, J. Membr. Sci., Vol. 222, pp. 181-190, 2003.