سنتز مقایسه‌ای نانوکاتالیست Ni/Z25M75 به روش تلقیح و سل-ژل جهت استفاده در تبدیل اتان به اتیلن در حضور دی‌اکسید‌کربن و اکسیژن

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران/ مرکز تحقیقات راکتور و کاتالیست، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران

2 دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران/ مرکز تحقیقات راکتور و کاتالیست، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران

چکیده

 
کاتالیست‌های نیکلی کارآیی خوبی در فرآیند هیدروژن‌گیری اکسایشی اتان و تولید اتیلن از خود نشان داده‌اند. منیزیم اکسید و زیرکونیم اکسید به‌ترتیب جهت تامین خاصیت بازی و اسیدی کاتالیست مورد نیاز مورد استفاده قرار گرفتند. به این منظور، نانوکاتالیست Ni/Z25M75 سنتز شد و جهت استفاده در تبدیل اتان به اتیلن در حضور دی‌اکسیدکربن و اکسیژن مورد ارزیابی قرار گرفت. به منظور مقایسه دو روش سل-ژل و تلقیح و تاثیر آن‌ها بر کارآیی کاتالیست‌ها در مطالعه این فرآیند، کاتالیست با ترکیب درصد Ni/Z25M75، با استفاده از این دو روش تهیه شدند. خصوصیات نانوکاتالیست‌های سنتز شده توسط آنالیزهای XRDا، FESEMا، EDXا، BET و FTIR مشخص شدند. براساس نتایج آنالیز XRD، در نمونه سنتز شده به روش تلقیح، اندازه کریستال‌های کوچک‌تری دارد. همچنین، تصاویر FESEM نشان داد ذرات نمونه سنتز شده با استفاده از روش سل-ژل بزرگ‌تر می‌باشند. در نهایت، ارزیابی عملکرد نانوکاتالیست‌های سنتز شده در محدوده دمای 650ºC-500 صورت گرفت. براساس نتایج تست‌های رآکتوری نانوکاتالیست سنتز شده به روش تلقیح کارآیی بهتری از نظر تبدیل اتان و بازده اتیلن از خود نشان داد. در این مطالعه، با استفاده از نانوکاتالیست تلقیح بازده 23/67% برای تولید اتیلن از اتان به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparative Synthesis of Ni/Z25M75 Nanocatalyst via Impregnation and Sol-Gel Methods Used in Conversion of Ethane to Ethylene in the Presence of CO2 and O2

نویسندگان [English]

  • Parastoo Delir Kheyrollahi Nezhad 1
  • Mohammad Haghighi 2
  • Naimeh Jodeiri 2
  • Farhad Rahmani 2
1 Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz, Iran/ Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, Tabriz, Iran
2 Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz, Iran/ Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, Tabriz, Iran
چکیده [English]

Ni-based catalysts demonstrated the beneficial performance in oxidative dehydrogenation. Magnesium oxide and zirconium oxide have been used in order to supply basic and acidic properties for the catalyst, respectively. Thus, Ni/Z25M75 nanocatalyst has been synthesized and evaluated in the conversion of ethane to ethylene in the presence of oxygen and carbon dioxide. For comparison purposes, Ni/Z25M75 has been synthesized via two different methods. The obtained catalysts  have been characterized by XRD, FESEM, EDX, BET and FTIR. The XRD analysis demonstrated that the sample prepared via impregnation had smaller crystallite size. Moreover, FESEM images illustrated larger particle size of the sample prepared using the sol-gel method. Finally, nano-catalyat practical evaluations during oxidative dehydrogenation were done in the range of 500-650 °C. According to the catalytic tests, the nanocatalyst synthesized via the impregnation had better performance in reaction in comparison to the sol-gel one in the terms of conversion and yield. In this study, %67.23 yield obtained using the nanocatalyst has beenprepared via impregnation method.

کلیدواژه‌ها [English]

  • Ni/Z25M75
  • Impregnation
  • Sol-Gel
  • Ethane
  • Ethylene

[1]. Seifzadeh Haghighi S., Rahimpour M. R., Raeissi S. and Dehghani O., “Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide,” Chemical Engineering Journal, Vol. 228, pp. 1158-1167, 2013.##

[2]. Sedighi M., Keyvanloo K. and Towfighi J., “Kinetic study of steam catalytic cracking of naphtha on a Fe/ZSM-5 catalyst,” Fuel, Vol. 109, pp. 432-438, 2013.##

[3]. Sadrameli S. M., “Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review,” Fuel, Vol. 140, pp. 102-115, 2015.##

[4]. Heracleous E. and Lemonidou A. A., “Reaction pathways of ethane oxidative and non-oxidative dehydrogenation on γ-Al2O3 studied by temperature-programmed reaction (TP-reaction),” Catalysis Today, Vol. 112, No. 1-4, pp. 23-27, 2006.##

[5]. Nakamura K. I., Miyake T., Konishi T. and Suzuki T., “Oxidative dehydrogenation of ethane to ethylene over NiO loaded on high surface area MgO”, Journal of Molecular Catalysis A: Chemical, Vol. 260, No. 1-2, pp. 144-151, 2006.##

[6]. Agouram S., Dejoz A., Ivars F., Vázquez I., López Nieto J. M. and Solsona B., “Oxidative dehydrogenation of ethane: A study over the structure and robustness of Ni-W-O catalysts”, Fuel Processing Technology, Vol. 119, pp. 105-113, 2014.##

[7]. Savova B., Loridant S., Filkova D. and Millet J. M. M., “Ni-Nb-O catalysts for ethane oxidative dehydrogenation”, Applied Catalysis A: General, Vol. 390, No. 1-2, pp. 148-157, 2010.##

[8]. Wu Y., Gao J., He Y. and Wu T., “Preparation and characterization of Ni-Zr-O nanoparticles and its catalytic behavior for ethane oxidative dehydrogenation”, Applied Surface Science, Vol. 258, No. 11, pp. 4922-4928, 2012.##

[9]. Dinse A., Schomacker R. and Bell A. T., “The role of lattice oxygen in the oxidative dehydrogenation of ethane on alumina-supported vanadium oxide”, Physical Chemistry Chemical Physics, Vol. 11, No. 29, pp. 6119-6124, 2009.##

[10]. García V., Fernández J. J., Ruíz W., Mondragón F. and Moreno A., “Effect of MgO addition on the basicity of Ni/ZrO2 and on its catalytic activity in carbon dioxide reforming of methane”, Catalysis Communications, Vol. 11, No. 4, pp. 240-246, 2009.##

[11]. Dury F., Centeno M. A., Gaigneaux E. M. and Ruiz P., “An attempt to explain the role of CO2 and N2O as gas dopes in the feed in the oxidative dehydrogenation of propane”, Catalysis Today, Vol. 81, No. 2, pp. 95-105, 2003.##

[12]. Dury F., Gaigneaux E. M. and Ruiz P., “The active role of CO2 at low temperature in oxidation processes: the case of the oxidative dehydrogenation of propane on NiMoO4 catalysts”, Applied Catalysis A: General, Vol. 242, No. 1, pp. 187-203, 2003.##

[13]. Rahmani F. and Haghighi M., “Sono-Dispersion of Cr over Nanostructured LaAPSO-34 Used in CO2 Assisted Dehydrogenation of Ethane: Effects of Si/Al Ratio and La Incorporation,” Journal of Natural Gas Science and Engineering, Vol. 27, Part 3, pp. 1684-1701, 2015.##

[14]. Rahmani F., Haghighi M.,Amini M., “The Beneficial Utilization of Natural Zeolite in Preparation of Cr/Clinoptilolite Nanocatalyst Used in CO2-Oxidative Dehydrogenation of Ethane to Ethylene,” Journal of Industrial and Engineering Chemistry, Vol. 31, pp. 142-155, 2015.##

[15]. Deng S., Li S., Li H. and Zhang Y., “Oxidative dehydrogenation of ethane to ethylene with CO2 over Fe−Cr/ZrO2 catalysts,” Industrial & Engineering Chemistry Research, Vol. 48, No. 16, pp. 7561-7566, 2009.##

[16]. Lee J. K., Lee H., Hong U. G., Lee J., Cho Y. J., Yoo Y., Jang H. S. and Song I. K., “Oxidative dehydrogenation of n-butane to n-butene and 1,3-butadiene over Mg3(VO4)2/MgO-ZrO2 catalysts: Effect of Mg:Zr ratio of support,” Journal of Industrial and Engineering Chemistry, Vol. 18, No. 3, pp. 1096-1101, 2012.##

[17]. Wang L., Chu W., Jiang C., Liu Y., Wen J. and Xie Z., “Oxidative dehydrogenation of propane over Ni-Mo-Mg-O catalysts”, Journal of Natural Gas Chemistry, Vol. 21, No. 1, pp. 43-48, 2012.##

[18]. Heracleous E., Lee A. F., Wilson K. and Lemonidou A. A., “Investigation of Ni-based alumina-supported catalystsfor the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies”, Journal of Catalysis, Vol. 231, No. 1, pp. 159-171, 2005.##

[19]. Zhu H., Ould-Chikh S., Anjum D. H., Sun M., Biausque G., Basset J. M. and Caps V., “Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane,” Journal of Catalysis, Vol. 285, No. 1, pp. 292-303, 2012.##

[20]. El-Shobaky G. A., Abdalla F. F., Hamed M. N. and El-Molla S. A., “Effects of ZrO2-doping of a CuO/MgO system on its surface and catalytic properties”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 211, No. 1, pp. 1-8, 2002.##

[21]. Asencios Y. J. O., Nascente P. A. P. and Assaf E. M., “Partial oxidation of methane on NiO-MgO-ZrO2 catalysts,” Fuel, Vol. 97, pp. 630-637, 2012.##

[22]. Fan M. S., Abdullah A. Z. and Bhatia S., “Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2: Preparation, characterization and activity studies”, Applied Catalysis B: Environmental, Vol. 100, No. 1-2, pp. 365-377, 2010.##

[23]. Dhak D. and Pramanik P., “Particle Size Comparison of Soft-Chemically Prepared Transition Metal (Co, Ni, Cu, Zn) Aluminate Spinels”, Journal of the American Ceramic Society, Vol. 89, No. 3, pp. 1014-1021, 2006.##

[24]. Parvas M., Haghighi M. and Allahyari S., “Degradation of phenol via wet-Air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance”, Environmental Technology, Vol. 35, No. 9, pp. 1140-1149, 2014.##

[25]. Asgari N., Haghighi M. and Shafiei S., “Synthesis and physicochemical characterization of nanostructured Pd/Ceria-Clinoptilolite catalyst used for P-Xylene abatement from waste gas streams at low temperature”, Journal of Chemical Technology and Biotechnology, Vol. 88, No. 4, pp. 690-703, 2013.##

[26]. Allahyari S., Haghighi M., Ebadi A. and Hosseinzadeh S., “Effect of irradiation power and time on ultrasound assisted Co-precipitation of nanostructured CuO-ZnO-Al2O3 over HZSM-5 used for direct conversion of syngas to DME as a green fuel”, Energy Conversion and Management, Vol. 83, pp. 212-222, 2014.##

[27]. Aghaei E. and Haghighi M., “Effect of crystallization time on properties and catalytic performance of nanostructured SAPO-34 molecular sieve synthesized at high temperatures for conversion of methanol to light olefins”, Powder Technology, Vol. 269, pp. 358-370, 2015.##

[28]. Khajeh Talkhoncheh S. and Haghighi M., “Syngas production via dry reforming of methane over ni-based nanocatalyst over various supports of clinoptilolite, ceria and alumina”, Journal of Natural Gas Science and Engineering, Vol. 23, pp. 16-25, 2015.##

[29]. Aghamohammadi S. and Haghighi M., “Dual-template synthesis of nanostructured CoAPSO-34 used in methanol to olefins: effect of template combinations on catalytic performance and coke formation”, Chemical Engineering Journal Vol. 264, pp. 359-375, 2015.##

[30]. Baneshi J., Haghighi M., Jodeiri N., Abdollahifar M. and Ajamein H., “Homogeneous precipitation synthesis of CuO-ZrO2-CeO2-Al2O3 nanocatalyst used in hydrogen production via methanol steam rReforming for fuel cell applications”, Energy Conversion and Management, Vol. 87, pp. 928-937, 2014.##

[31]. Aghaei E. and Haghighi M., “Enhancement of catalytic lifetime of nanostructured SAPO-34 in conversion of biomethanol to light olefins”, Microporous and Mesoporous Materials, Vol. 196, pp. 179-190, 2014.##

[32]. Ebrahimynejad M., Haghighi M. and Asgari N., “Ultrasound assisted synthesis and physicochemical characterization of fluorine-modified CoMo/Al2O3 nanocatalysts used for hydrodesulfurization of thiophene”, Journal of Nanoscience and Nanotechnology, Vol. 14, No. 9, pp. 6848-6857, 2014.##

[33]. Donald L. and Pavia G. M. L., “Introduction to spectroscopy: a guid for students of organic chemistary”, Translated by Dr. Barahman Movassagh, Published by Elmi va Fanni, 1987.##

[34]. Leveles L., Seshan K., Lercher J. A. and Lefferts L., “Oxidative conversion of propane over lithium-promoted magnesia catalyst: II. Active site characterization and hydrocarbon activation”, Journal of Catalysis, Vol. 218, No. 2, pp. 307-314, 2003.##