ساخت نانو ذرات ZnO به روش صوتی- شیمیایی برای بهبود عملکرد فتوکاتالیستی آن‌ها در تبدیل گازهای گلخانه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات کاتالیست، دانشکده مهندسی شیمی، دانشگاه رازی کرمانشاه، ایران

2 دانشجوی دکتری دانشگاه رازی

چکیده

هدف از این تحقیق حذف گازهای گلخانه‌ای CO2 و CH4 با استفاده از نانو ذرات ZnO ساخته شده و مقایسه عملکرد آن‌ها با ZnO تجاری می‌باشد. نانو ذرات ZnO با استفاده از روش صوتی - شیمیایی از محلول روی استات دو آبه و اتانول تهیه شدند. ویژگی‌های فیزیکی و شیمیایی نانو ذرات ZnO ساخته شده با استفاده از روش‌های XRDا، UV-visا، FTIR و SEM بررسی شدند. علاوه بر این، تبدیل فتوکاتالیستی CO2 و CH4 در محیط گازی توسط GC-TCD بررسی شد. محصولات به‌دست آمده از واکنش فتوکاتالیستی نیز توسط FTIR گازی و GC-Mass شناسایی شدند. تصاویر SEM نشان دادند که نانو ذرات ZnO به‌دست آمده یکنواخت می‌باشند. طیف سنجی UV-vis نشان داد که بعد از کلسینه کردن محدوده جذب ZnO به ناحیه مرئی انتقال می‌یابد. هم‌چنین، طیف سنجی XRD نشان داد که بعد از کلسینه کردن ZnO خالص به‌دست می‌آید. براساس نتایج به‌دست آمده میزان تبدیل CO2 و CH4 توسط نانو ذرات ZnO تهیه شده به‌ترتیب برابر 3/14 و 7/14% می‌باشد که این مقادیر حدودا 2 برابر درصدهای مربوط به ZnO تجاری است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improvement of Photocatalytic Performance of Prepared ZnO Nanoparticles by Sonochemical Method in Conversion of Greenhouse Gases

نویسندگان [English]

  • Ziba Rostaei 1
  • Shahram Sharifnia 1
  • Nasrin Sadeghi 2
1 Catalyst Research Center, Department of Chemical Engineering, Razi University, Kermanshah, Iran
2
چکیده [English]

The purpose of this research is to remove greenhouse gases CO2 and CH4 by using ZnO nanoparticles produced from aqueous solution of zinc acetate dihydrate and ethanol by sonochemical method, and comparison of its performance with commercial ZnO. The prepared ZnO nanoparticles were analyzed by XRD, UV-vis, FTIR and SEM. Also, the photocatalytic conversion of CO2 and CH4, and photoreduction products were identified by means of GC-TCD and FTIR in gas medium. SEM images indicated that prepared ZnO nanoparticles were uniform. UV-vis spectrum showed that, after calcination, the range of ZnO absorption was proceeding toward the visible region. Also, XRD spectrum showed that, after calcination, pure ZnO has been produced. According to the results, nano ZnO with the efficiency about twice of commercial ZnO, leads to conversion of 14.3 and 14.7 % for CO2 and CH4, respectively.
 

کلیدواژه‌ها [English]

  • Photocatalyst
  • ZnO
  • Nanoparticles
  • Sonochemical Method
  • Greenhouse Gases
[1]. Kočí K., Obalová L. and Lacný Z., “Photocatalytic reduction of CO2 over Tio2 based catalysts,” Chem. Pap., Vol. 62, No. 1, pp. 1-9, 2008.##
[2]. Yazdanpour N. and Sharifnia S., “Photocatalytic conversion of greenhouse gases (CO2 and CH4) using copper phthalocyanine modified Tio2,” Sol. Energ. Mat. Sol. Cells Vol. 118, pp. 1-8, 2013.##
[3]. Karamian E. and Sharifnia S., “On the general mechanism of photocatalytic reduction of CO2,” J. CO2 Util., Vol. 16, pp. 194-203, 2016.##
[4]. Centi G., Perathoner S. and Rak Z. S., “Reduction of greenhouse gas emissions by catalytic processes,” Appl. Catal. B, Vol. 41, No.1–2, pp. 143-155, 2003.##
[5]. He X., Gan Z., Fisenko S., Wang D., El-Kaderi H. M., Wang W. N., “Rapid formation of metal–organic frameworks (mofs) based nanocomposites in microdroplets and their applications for CO2 photoreduction,” ACS Appl. Mater. Interfaces Vol. 9, No. 11, pp. 9688-9698, 2017.##
[6]. Mikkelsen M., Jorgensen M. and Krebs F. C., “The teraton challenge. a review of fixation and transformation of carbon dioxide”, Energy Environ. Sci., Vol. 3, No. 1, pp. 43-81, 2010.##
[7]. Sadeghi N., Sharifnia S. and Sheikh Arabi M., “A porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase”, J. CO2 Util., Vol. 16, No. 450-457, 2016.##
[8]. Blake D. M., “Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air”, National Renewable Energy Laboratory, 1994.##
[9]. Moafi H. F., Zanjanchi M. A. and Shojaie A. F., “Tungsten-doped zno nanocomposite: synthesis, characterization, and highly active photocatalyst toward dye photodegradation,” Mater. Chem. and Phys., Vol. 139, No. 2–3, pp. 856-86, 2013.##
[10]. Hong R. Y., Li J. H., Chen L. L., Liu D. Q., Li H. Z., Zheng Y. and Ding J., “Synthesis, surface modification and photocatalytic property of zno nanoparticles,” Powder Technol., Vol. 189, No. 3, pp. 426-432, 2009.##
[11]. Lin C. C. and Hsu L. J., “Removal of polyvinyl alcohol from aqueous solutions using p-25 TiO2 and zno photocataysts: a comparative study,” Powder Technol., Vol. 246, pp. 351-355, 2013.##
[12]. Mahmodi G., Sharifnia S., Madani M. and Vatanpour V., “Photoreduction of carbon dioxide in the presence of H2, H2O and CH4 over TiO2 and zno photocatalysts,” Sol. Energ., Vol. 97, pp. 186-194, 2013.##
[13]. Gao S., Gu B., Jiao X., Sun Y., Zu X., Yang F., Zhu W., Wang C., Feng Z., Ye B. and Xie Y., “Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers,” J. Am. Chem. Soc., Vol. 139, No. 9, pp. 3438-344, 2017.##
[14]. Kandavelu V., Kastien H. and Thampi K. R., “Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and zno catalysts,” Appl. Catal. B, Vol. 48, No. 2, pp. 101-111, 2004.##
[15]. Reñones P., Fresno F., Fierro J. L. G., de la Peña O’Shea V. A., “Effect of la as promoter in the photoreduction of CO2 over TiO2 catalysts,” Top. Catal., pp. 1-10, 2017.##
[16]. Özgür Ü., Alivov Y. I., Liu C., Teke A., Reshchikov M., Doğan S., Avrutin V., Cho S. J. and Morkoc H., “A comprehensive review of zno materials and devices,” J. Appl. Phys., Vol. 98, No. 4, p. 11, 2005.##
[17]. Fierro J. L. G., “Metal oxides: chemistry and applications,” CRC Press, 2005.##
[18]. Mahmodi G., Sharifnia S., Rahimpour F. and Hosseini S. N., “Photocatalytic conversion of CO2 and CH4 using zno coated mesh: effect of operational parameters and optimization,” Sol. Energ. Mater. Sol. Cells, Vol. 111, pp. 31-40, 2013.##
[19]. Hassanjani-Roshan S. M. K. A., Vaezi M. R. and Shokuhfar A., “Effect of sonication power on the sonochemical synthesis of titania nanoparticles,” J. Ceram. Process. Res., Vol. 12, No. 3, pp. 299-303, 2011.##
[20]. Kumar B. V., Naik H. S. B., Girija D. and Kumar B. V., “ZnO nanoparticle as catalyst for efficient green one-pot synthesis of coumarins through knoevenagel condensation,” J. Chem. Sci., Vol. 123, No. 5, pp. 615-621, 2011.##
[21]. Seetawan U., Jugsujinda S., Seetawan T., Ratchasin A., Euvananont C., Junin C., Thanachayanont C. andChainaronk P., “Effect of calcinations temperature on crystallography and nanoparticles in zno disk,” Mater. Sci. Appl., Vol. 2, No. 09, p. 1302, 2011.##
[22]. Lv J., Gong W., Huang K., Zhu J., Meng F., Song X. and Sun Z., “Effect of annealing temperature on photocatalytic activity of zno thin films prepared by sol–gel method,” Superlattices Microstruct., Vol. 50, No. 2, pp. 98-106, 2011.##
[23]. Kandjani A. E., Tabriz M. F. and Pourabbas B., “Sonochemical synthesis of znO nanoparticles: the effect of temperature and sonication power,” Mater. Res. Bull., Vol. 43, No. 3, pp. 645-654, 2008.##
[24]. Banerjee P., Chakrabarti S., Maitra S. and Dutta B. K., “Zinc oxide nano-particles–sonochemical synthesis, characterization and application for photo-remediation of heavy metal,” Ultrason. Sonochem., Vol. 19, No. 1, pp. 85-93, 2012.##
[25]. Hayat K., Gondal M., Khaled M. M., Ahmed S. and Shemsi A. M., “Nano zno synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water,” Appl. Catal. A., Vol. 393, No. 1, pp. 122-129, 2011.##
[26]. Kansal S. K., A. H. Ali, S. Kapoor, “Photocatalytic decolorization of biebrich scarlet dye in aqueous phase using different nanophotocatalysts,” Desalination, Vol. 259, No. 1, pp. 147-155, 2010.##
[27]. Daneshvar N., Aber S., Dorraji M. S., Khataee A. and Rasoulifard M., “Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline zno powders under irradiation of uv-c light,” Sep. Purif. Technol., Vol. 58, No. 1, pp. 91-98, 2007.##
[28]. C.-C. Lin, Y.-Y. Li, “Synthesis of zno nanowires by thermal decomposition of zinc acetate dihydrate,” Mater. Chem. Phys., Vol. 113, No. 1, pp. 334-337, 2009.##
[29]. Hsieh C. H., “Spherical zinc oxide nano particles from zinc acetate in the precipitation method,” J. Chin. Chem. Soc., Vol. 54, No. 1, pp. 31-34, 2007.##
[30]. Sabbaghan M., Firooz A. A. and Ahmadi V. J., “The effect of template on morphology, optical and photocatalytic properties of zno nanostructures,” J. Mol. Liq., Vol. 175, pp. 135-140, 2012.##
[31]. Lee S. D., Nam S. H., Kim M. H. and Boo J. H., “Synthesis and photocatalytic property of zno nanoparticles prepared by spray-pyrolysis method,” Phys. Procedia, Vol. 32, pp. 320-326, 2012 .##
[32]. Li B. j., Huang L. j., Zhou M. and Ren N. f., “Morphology and wettability of zno nanostructures prepared by hydrothermal method on various buffer layers,” Appl. Surf. Sci., Vol. 286, pp. 391-396, 2013.##
[33]. Zhu B., Zhao X., Su F., Li G., Wu X., Wu J. and Wu R., “Low temperature annealing effects on the structure and optical properties of zno films grown by pulsed laser deposition,” Vacuum, Vol. 84, No. 11, pp. 1280-1286, 2010.##
[34]. Shao H., Qian X. and Huang B., “Fabrication of single-crystal zno nanorods and zns nanotubes through a simple ultrasonic chemical solution method,” Mater. Lett., Vol. 61, No. 17, pp. 3639-3643, 2007.##
[35]. Sahu D., Acharya B. and Panda A., “Role of ag ions on the structural evolution of nano zno clusters synthesized through ultrasonication and their optical properties,” Ultrason. Sonochem., Vol. 18, No. 2, pp. 601-607, 2011.##
[36]. Xu J., Ji W., Lin J., Tang S. and Du Y., “Preparation of zns nanoparticles by ultrasonic radiation method,” Appl. Phys. A, Vol. 66, No. 6, pp. 639-641, 1998.##
[37]. De Castro M. L. and Priego-Capote F., “Ultrasound-assisted crystallization (sonocrystallization),” Ultrason. Sonochem., Vol. 14, No. 6, pp. 717-724, 2007.##
[38]. Merajin M. T., Sharifnia S., Hosseini S. and Yazdanpour N., “Photocatalytic conversion of greenhouse gases (CO2 and CH4) to high value products using TiO2 nanoparticles supported on stainless steel webnet,” J. Taiwan Inst. Chem. Eng., Vol. 44, No. 2, pp. 239-246, 2013.##
[39]. Raza W., Khan A., Alam U., Muneer M. and Bahnemann D., “Facile fabrication of visible light induced Bi2O3 nanorod using conventional heat treatment method,” J. Mol. Struct., Vol. 1107, pp. 39-46, 2016.##
[40]. Karamian E. and Sharifnia S., “On the general mechanism of photocatalytic reduction of CO2,” J. CO2 Utili., Vol. 16, pp. 194–203, 2016.##