[1]. Arief I. H., “Assisted history matching: a comprehensive study of methodology”, in Faculty of Science and Technology, Stavanger, 2013. ##
[2]. Denney D., “Pros and cons of applying a proxy model as a substitute for full reservoir simulations”, Journal of Petroleum Technology, Vol. 62, p. 07, 2010. ##
[3]. Azad A. and Chalaturnyk R., “Application of analytical proxy models in reservoir estimation for SAGD process: UTF-project case study,” SPE-165576-PA, Journal of Canadian Petroleum Technology, Vol. 52, 2013. ##
[4]. Fedutenko E., Yang C., Card C. and Nghiem L. X., “Time-dependent proxy modeling of SAGD process,” in SPE Heavy Oil Conference-Canada, SPE-165395-MS: Calgary, Alberta, Canada, 2013. ##
[5]. Fedutenko E., Yang C. Card C. and Nghiem L. X., “Time-dependent neural network based proxy modeling of SAGD process,” in SPE Heavy Oil Conference-Canada, SPE-170085-MS: Calgary, Alberta, Canada, 2014. ##
[6]. Ghasemi M. and Whitson C. H., “Modeling SAGD with a black-oil proxy,” in SPE Annual Technical Conference and Exhibition, SPE-147072-MS: Denver, Colorado, USA, 2011. ##
[7]. Yao S. and Prasad V., “Proxy modeling of the production profiles of SAGD reservoirs based on system identification,” Industrial & Engineering Chemistry Research, Vol. 54 (33), pp 8356–8367, DOI: 10.1021/ie502258z 2015. ##
[8]. Amini S., Mohaghegh S. D., Gaskari R. and Bromhal G. S., “Pattern recognition and data-driven analytics for fast and accurate replication of complex numerical reservoir models at the grid block level,” in SPE Intelligent Energy Conference and Exhibition, SPE-167897-MS: Utrecht, The Netherlands, 2014. ##
[9]. Haghighat S. A., Mohaghegh Sh. D., Gholami V., Shahkarami A. R. and Moreno D. A. “Using big data and smart field technology for detecting leakage in a CO2 storage projects,” in SPE Annual Technical Conference and Exhibition., SPE 166137: New Orleans, Louisiana, USA, 2013. ##
[10]. Suykens A. K., Gestel T. V. and Brabanter J. D., “Least square support vector machines,” Singapore World Scientific Publishing Co. 2002. ##
[11]. Ahmadi M. A. and A. Bahadori, “A LSSVM approach for determining well placement and conning phenomena in horizontal wells,” Fuel, Vol. 153, pp. 276–283, 2015. ##
[12]. Espinoza M., JohanA., Suykens K. and Moor B. D., “Least square support vector machines and primal space estimation,” in 42nd IEEE Conference on Decision and Control,: Maui,Hawaii, USA, 2003. ##
[13]. Panja P., Pathak M., Velasco R. and Deo M., “Least square support vector machine :an emerging tool for data analysis,” in SPE Low Perm Symposium., SPE-180202-MS: Denver, Colorado, USA, 2016. ##
[14]. Mohamed Al-akhdar S. and Yu Ding D., “An integrated parameterization and optimization methodology for assisted history matching: application to libyan field case,” in North Africa Technical Conference and Exhibition., Society of Petroleum Engineers, SPE-150716-MS: Cairo, Egypt, 2012. ##
[15]. Wang s., ZHAO G., XU L., GUO D. and SUN S. “Optimization for automatic history matching,” International Journal of Numerical Analysis and Modeling, Vol. 2, pp. 131-137, 2005. ##
[16]. Dehghan Monfared A., Helalizadeh A., Parvizi H. and Zobeidi K., “A global optimization technique using gradient information for history matching,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,. 36(Taylor & Francis), pp. 1414–1428, 2014. ##
[17]. Mohaghegh S. D., Toro J., Wilson T. H., Artun E., Sanchez A. and Pyakurel S., “An intelligent systems approach to reservoir characterization,” U.S. Department of Energy, 2005. ##
[18]. Dehghan Monfared A., Helalizadeh A. and Parvizi H., “Automatic history matching using the integration of response surface modeling with a genetic algorithm,” Petroleum Science and Technology, 30(Taylor & Francis Group, LLC): pp. 360-374, 2012. ##
[19]. He J., Xie J., Wen X. H. and Chen W., “Improved proxy for history matching using proxy-for-data approach and reduced order modeling,” in SPE Western Regional Meeting, Society of Petroleum Engineers, SPE-174055-MS: California, USA, 2015. ##