ترکیب روش‌های عصبی، فازی و عصبی- فازی با استفاده از الگوریتم مورچگان پیوسته برای تشخیص رخساره‌های مخزن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه ژئوفیزیک، دانشگاه تهران، ایران

2 دانشکده علوم زمین، دانشگاه تبریز، ایران

چکیده

تشخیص رخساره‌های مخزنی و تعیین نواحی با کیفیت مخزنی بالا نقش مهمی در مدل‌سازی مخزن و همچنین حفاری‌های آتی در میدان‌های در حال توسعه ایفا می‌کند. شاخص جریانی یکی از شاخص‌هایی است که با توجه به تغییر خصوصیات مخزن تغییر کرده و می‌تواند نقش موثری در تقسیم‌بندی رخساره‌های مخزنی داشته باشد. مطالعه حاضر یک مدل بهینه‌یافته و پیشرفته را به‌وسیله ترکیب سیستم‌های هوشمند برای تخمین شاخص جریانی در کل میدان پیشنهاد می‌دهد. این ماشین گروهی  نتایج پیش‌بینی شده حاصل از سیستم‌های هوشمند عصبی، فازی و عصبی- فازی را با وزن‌های مشخص با هم ترکیب می‌کند، وزن‌های بهینه برای هر یک از این روش‌ها به‌وسیله الگوریتم مورچگان پیوسته تعیین می‌شود. در این مطالعه از داده‌های چاه و لرزه‌نگاری سه‌بعدی مربوط به یکی از میادین جنوب ایران برای اعمال روش‌ها استفاده شده است. در مرحله اول، نشانگرهای لرزه‌ای که ارتباط بیشتری با داده هدف (FZI) دارند با استفاده از برازش گام به گام انتخاب می‌شوند و در ادامه با استفاده از سیستم‌های هوشمند و ترکیب آن‌ها مکعب سه‌بعدی شاخص جریانی در کل میدان تخمین زده می‌شود و در مرحله پایانی با استفاده از الگوریتم خوشه‌بندی C میانگین فازی (Fuzzy C-Mean) رخساره‌های مختلف مخزن از هم تفکیک داده می‌شوند. نتایج این مطالعه نشان‌دهنده کارایی بهتر ماشین گروهی با استفاده الگوریتم مورچگان پیوسته (ACO R) نسبت به هر یک از روش‌های منفرد می‌باشد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Integrating Neural, Fuzzy Logic, and Nero-fuzzy Approaches Implementing Ant Colony Optimization Routing Algorithm to Determine Reservoir Facies

نویسندگان [English]

  • Reza Mohebian 1
  • Mohammad Ali Riahi 1
  • Ali Kadkhodaie 2
1 Institute of Geophysics, University of Tehran, Iran
2 Earth Science Department, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
چکیده [English]

Determining the reservoir facies and areas with high-quality reservoirs play a pivotal role in reservoir modeling as well as future drilling in developing oilfields. As an index which varies in line with changes in the reservoir characteristics, Flow Zone Indicator (FZI) could be an influential factor in dividing the facies. The present study attempts to propose an advanced, optimized model through integrating the intelligent systems to estimate the FZI in the whole oilfield. This Committee Machine (CM) integrates the predicted results obtained from the intelligent neural, fuzzy logic, and Nero-Fuzzy systems with defined weights. Optimized weights for each method are determined using the Ant Colony Optimization Routing (ACOR) Algorithm. In this study, to apply the methods, well log and seismic data were used from one of the oilfields in South Iran. At the first stage, seismic attributes which were far more associated with the target data (FZI) were selected by stepwise regression. Subsequently, a 3D cube flow indicator in the whole field was estimated with intelligent systems. Finally, various reservoir facies were classified by the means of Fuzzy C-Mean Algorithm. The results illustrate that the committee machine which utilizes ACOR outperforms other individual systems acting alone.
 

کلیدواژه‌ها [English]

  • Reservoir Facies
  • Committee Machine (CM)
  • Fuzzy Logic
  • Nero-Fuzzy Systems
  • Ant Colony Optimization Routing (ACOR
[1]. Carr D. and Oliver K. L.,“Surface-bounded reservoir compartmentalization in the caddo conglomerate, boonsville (bend conglomerate) gas field, fort worth basin, Texas,” AAPG Bulletin, Issue 5, Annual Convention of the American Association of Petroleum Geologists, Inc. and the Society for Sedimentary Geology: Global Exploration and Geotechnology; 19-22 May; San Diego, CA, United States, 1996. ##
[2]. Michelena R. J., Gonzalez E. and Capello De P. M., “Similarity analysis: a newtool to summarizeseismic attributes information,” The Leading Edge, Vol. 17 (4), pp. 545-548, 1998. ##
[3]. Barnes A., “Attributes for automating seismic facies analysis,” SEG Annual Meeting, 6-11 August, Calgary, Alberta, 2000.
[4]. West B., May S., Eastwood J. and Rossen C., “Interactive seismic faciesclassification of stack and AVO data using textural attributes and neural networks,” SEG Annual Meeting, 9-14 September, San Antonio, Texas, 2002. ##
[5]. Taner M. T. and Treitel S., “Harmonic attributes,” Submitted to SEG 2004 Annual Symposium, SEG Int’l Exposition and 74th Annual Meeting, Denver, Colorado, 10-15 Oct. 2004. ##
[6]. Farzadi P. and Hesthammer J., “Diagnosis of the Upper Cretaceous palaeokarst and turbidite systems from the Iranian Persian Gulf using volume-based multiple seismic attribute analysis and patternrecognition,” Petroleum Geoscience 13 (3), pp. 227-240, DOI: 10.1144/1354-079306-710, August 2007. ##
[7]. Biswal H. S. K., Sood A. and Rangachari V., “Identification of reservoir facies within a carbonateand mixed carbonate-siliciclastic sequence: Application of seismic stratigraphy, seismic attributes, and 3D visualization,” The Leading Egde, Vol. 27, Issue 1, pp. 18-29, January 2008. ##
[8]. Dezfoolian M. A., Riahi M. A. and Kadkhodaie-Ilkhchi A., “Conversion of 3D seismic attributes to reservoir hydraulicflow units using a neural network approach: an example from the Kangan and Dalan carbonate reservoirs,” the worlds largest non-associated gas reservoirs, near the Persian Gulf, Earth Sci. Res. J, Vol. 17 (2), pp. 75-85, 2013. ##
[9]. Yarmohammadi S. and Kadkhodaie-Ilkhchi A., “Seismic reservoir characterization of a deep water sandstone reservoir using hydraulic and electricalflow units: a case study from the Shah Deniz gas field, the South Caspian Sea,” J. Pet. Sci. Eng, Vol. 118, pp. 52-60, 2014. ##
[10]. Diogo M., Ramos L. and André A., “Facies identification by fuzzy inference,” 13th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, doi.org/10.1190/SBGf2013, 26–29 August 2013. ## 
[11]. Socha K. and Dorigo M, “Ant colony optimization for continuous domains,” European Journal of Operational Research, Vol. 185, No. 3, pp. 1155–1173, 2008. ##
[12]. Bhatt A. and Helle H. B., “Committee neural networks for porosity and permeability prediction from well logs,” Geophysical Prospecting, Vol. 50, pp. 645-660, 2002. ##
[13]. Mamdani E. H. and Assilian S., “An experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Man-Machine Studies Vol. 7, pp. 1-13, 1975. ##
[14]. Sugeno M., “Industrial applications of fuzzy control,” Elsevier Science, Amsterdam, 1985. ##
[15]. Nikravesh M. and Aminzadeh F., “Soft computing and intelligent data analysis in oil exploration. part1: introduction: fundamentals of soft computing,” Elsevier, Berkeley, USA. p.744, 2003. ##
[16]. Naftaly U., Intrator N. and Horn D., “Optimal ensemble averaging of neural networks,” Computation in Neural Systems, Vol. 8, pp. 283-296, 1997. ##
[17]. Chen C. H. and Lin Z. S., “A committee machine with empirical formulas for permeability Prediction,” Computers & Geosciences, Vol. 32, pp. 485-496, 2006. ##
[18]. Lim J. S., “Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea,” Journal of Petroleum Science and Engineering, Vol. 49, pp. 182-192, 2005. ##
[19]. Kadkhodaie A., Rahimpour-Bonab H. and Rezaee M. R., “A committee machine with intelligentsystems for estimation of total organic carbon content from petrophysical data: an example from the kangan and dalan reservoirs in south pars gas field, Iran,” Computers & Geosciences, Elsevier Publications, Vol. 35, pp. 459-474, 2009. ##