بهینه‌سازی تولید یکپارچه از یک میدان بالغ نفتی با استفاده از فرازآوری مصنوعی با گاز و با در نظر گرفتن ‌محدودیت‌های غیر خطی عملیاتی

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در سال‌های اخیر بحث بهینه‌سازی تولید به یکی از موضوعات مورد نیاز در صنعت نفت و گاز تبدیل شده است. بهینه‌سازی تولید یکی از پیچیده‌ترین فعالیت‌ها از نقطه نظر عملیاتی که به علت خواص فیزیکی متنوع سنگ و سیال، خطاهای ابزارها تحت تاثیر عدم قطعیت قرار می‌گیرد. بهینه‌سازی تولید بر مبنای مجموعه فعالیت‌هایی که اطلاعات اندازه‌گیری و جمع‌آوری شده را به تصمیمات مدیریتی بهینه تبدیل می‌کند، تعریف می‌شود. در این مطالعه، بهینه‌سازی تولید از یک میدان بالغ هیدروکربوری واقع در جنوب ایران با درنظر گرفتن ‌محدودیت‌های غیرخطی و چهار سناریوی متفاوت صورت پذیرفت و با توجه به میزان تولید تجمعی نفت و سود حاصل از پروژه، بهترین سناریوی تولیدی برای میدان مورد مطالعه انتخاب شد. نتایج حاصل از شبیه‌سازی و بهینه‌سازی نشان داد که در شرایط کنونی میدان، تزریق گاز نسبت به فرازآوری مصنوعی با گاز به دلیل کاهش هزینه و زمان و همچنین افزایش ارزش خالص کنونی در اولویت است. اگر چه با استفاده از روش فرازآوری مصنوعی با گاز میزان تولید انباشتی نفت نسبت به روش تزریق گاز بیشتر است اما به دلیل افزایش هزینه های آن ارزش خالص کنونی کمتری خواهد داشت.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Integrated Production Optimization from a Mature Oil Field Using Artificial Gas Lift by Considering Nonlinear Operational Constraints

نویسندگان [English]

  • Ehsan Khamehchi
  • meysam naderi
  • mohammad hossein hajati
Faculty of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

Production optimization is one of the most complex activities from the operational point of view due to the effect of the uncertainty of physical rock and fluid properties, errors, and the lack of measurement tools. Production optimization is defined based on a set of activities that measure and collect data to make optimized management decisions. The purpose of this study is to optimize the production of a mature hydrocarbon field located in the south of Iran with consideration operational nonlinear constrains, and by defining four different scenarios. Cumulative oil production and net present value were used to select the best production scenario from this oil field. The results of simulation and optimization showed that in the current situation of the field, gas injection is prioritized with respect to artificial gas lift with gas due to the reduction of cost and time, as well as an increase in current net present value. Although, using an artificial gas lift method, the amount of cumulative oil production is higher than the gas injection method, but due to increased costs, it will have less net present value.
 

کلیدواژه‌ها [English]

  • Hydrocarbon Field
  • Nonlinear Constrains
  • Optimized Production
  • Artificial Gas Lift
  • Optimization

[1]. Khamehchi E. and Mahdiani M. R., “An introduction to gas lift,” in Gas Allocation Optimization Methods in Artificial Gas Lift, Springer International Publishing, pp. 1–5, 2017. ##

[2]. Khamehchi E. and Mahdiani M. R., “Gas allocation optimization methods in artificial gas lift,” Springer, 2016. ##

[3]. Economides M., Hill A. D. and Ehlig-Economides C., “Petroleum production systems,” NewJersy: Perintiece Hall, 1994. ##

[4]. Brown K. E., “Gas lift theory and practice,” Tusla: Petroleum Publishing Co., 1967. ##

[5]. Clegg J. D., “Discussions of economic approach to oil production and gas allocation in continuous gas lift,” J. Pet. Technol.;(United States), Vol. 34, No. 2, 1982. ##

[6]. Uren L. C., Gregory P. P., Hancock R. A. and Feskov G. V, “Flow resistance of gas-oil mixtures through vertical pipes,” Trans. AIME, Vol. 86, No. 01, pp. 209–219, 1930. ##

[7]. Hagedorn A. R. and Brown K. E., “Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits,” J. Pet. Technol., Vol. 17, No. 04, pp. 475–484, 1965. ##

[8]. Buitrago S., Rodriguez E. and Espin D., “Global optimization techniques in gas allocation for continuous flow gas lift systems,” in SPE gas technology symposium, 1996. ##

[9]. Kumar A. and Malhotnal B. D., “Automation of gas lift operation in Bombay offshore fields,” in 7th Abu International Petroleum Exhibition and Conferrance, 1996. ##

[10]. Dutta-Roy K. and Kattapuram J., “A new approach to gas-lift allocation optimization,” in SPE Western regional Meeting, 1997. ##

[11]. Khamehchi E., Rashidi F., Omranpour H., Ghidary S. S., Ebrahimian A. and Rasouli H., “Intelligent system for continuous gas lift operation and design with unlimited gas supply,” J. Appl. Sci., Vol. 9, pp. 1889–1897, 2009. ##

[12]. Khamehchi E., Rashidi F., Karimi B., Pourafshary P. and Amiry M., “Continuous gas lift optimization using genetic algorithm,” Aust. J. Basic Appl. Sci., Vol. 3, No. 4, pp. 3919–3929, 2009. ##

[13]. Hamedi H., Rashidi F. and Khamehchi E., “A novel approach to the gas-lift allocation optimization problem,” Pet. Sci. Technol., Vol. 29, No. 4, pp. 418–427, 2011. ##

[14]. Rasouli H., Rashidi F. and Khamehchi E., “Optimization of an integrated model to enhance oil production based on gas lift optimization under limited gas supply,” Oil Gas Eur. Mag., Vol. 37, No. 4, pp. 199–202, Dec. 2011. ##

[15]. Khishvand M. and Khamehchi E., “Nonlinear Risk optimization approach to gas lift allocation optimization,” Ind. Eng. Chem. Res., Vol. 51, No. 6, pp. 2637–2643, Feb. 2012. ##

[16]. Khamehchi E., Abdolhosseini H. and Abbaspour R., “Prediction of maximum oil production by gas lift in an Iranian field using auto-designed neural network,” History, Vol. 138, p. 150, 2014. ##

[17]. Khishvand M., Khamehchi E. and Nokandeh N. R., “A nonlinear programming approach to gas lift allocation optimization,” Energy Sources, Part A Recover. Util. Environ. Eff., Vol. 37, No. 5, pp. 453–461, 2015. ##

[18]. Mahdiani M. R. and Khamehchi E., “Stabilizing gas lift optimization with different amounts of available lift gas,” J. Nat. Gas Sci. Eng., Vol. 26, 2015. ##

[19]. Mahdiani M. R. and Khamehchi E., “Preventing Instability phenomenon in gas-lift optimization,” Iran. J. Oil Gas Sci. Technol., Vol. 4, No. 1, pp. 49–65, Jan. 2015. ##

[20]. Mahdiani M. R. and Kooti G., “The most accurate heuristic-based algorithms for estimating the oil formation volume factor,” Petroleum, Vol. 2, No. 1, pp. 40–48, 2016. ##

[21]. Mahdiani M. R. and Khamehchi E., “A novel model for predicting the temperature profile in gas lift wells,” Petroleum, 2016.

[22]. Hamedi H. and Khamehchi E., “A nonlinear approach to gas lift allocation optimization with operational constraints using particle swarm optimization and a penalty function,” Pet. Sci. Technol., Vol. 30, No. 8, pp. 775–785, Feb. 2012. ##

[23]. Khamehchi E. and Mahdiani M. R., “The fitness function of gas allocation optimization,” in Gas Allocation Optimization Methods in Artificial Gas Lift, Springer International Publishing, 2017, pp. 7–23. ##

[24]. Khamehchi E. and Mahdiani M. R., “Constraint optimization,” in Gas Allocation Optimization Methods in Artificial Gas Lift, Springer International Publishing, pp. 25–34, 2017. ##

[25]. Khamehchi E. and Mahdiani M. R., “Optimization algorithms,” in Gas Allocation Optimization Methods in Artificial Gas Lift, Springer International Publishing, pp. 35–46, 2017. ##

[26]. Mahdiani M. R. and Khamehchi E., “A modified neural network model for predicting the crude oil price,” Intellect. Econ., Vol. 10, No. 2, pp. 71–77, 2016. ##