بررسی نقش نوع و اندازه شعاع گلوگاه منافذ در تعیین واحد‌های جریانی با استفاده از نمودار انحراف سرعت و داده‌های مغزه‌ در میدان نفتی دورود، سازند فهلیان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران، ایران

2 گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، ایران

3 شرکت نفت فلات قاره ایران

10.22078/pr.2018.3372.2549

چکیده

گونه‌های سنگی پتروفیزیکی به بخشی از مخزن اطلاق می‌شود که از لحاظ ویژگی‌های زمین‌شناسی و پتروفیزیکی دارای خواص مشابهی باشد. به این دلیل برقراری ارتباط بین واحد‌های زمین‌شناسی و پتروفیزیکی می‌تواند در درک هرچه بهتر ناهمگنی مخزن به ویژه در کربنات‌ها که به شدت در اثر فرآیند‌های دیاژنزی از لحاظ نوع و اندازه شعاع گلوگاه متنوع هستند، مفید باشد. نوع و اندازه شعاع گلوگاه منافذ به عنوان پارامترهایی که محصول فرآیند زمین‌شناسی (رسوب‌گذاری و دیاژنز) هستند، خواص پتروفیزیکی سنگ مخزن را کنترل می‌کنند. بنابراین این دو پارامتر بهترین ابزار برای برقراری ارتباط بین ویژگی‌های زمین‌شناسی و پتروفیزیکی در هر واحد سنگی پتروفیزیکی هستند. در این پژوهش از سه روش شاخص زون جریان، روش وینلند و گونه‌های سنگی ناپیوسته برای تعیین گونه‌های سنگی پتروفیزیکی استفاده شده است. شاخص زون جریان عملکرد بهتری نسبت به روش‌های دیگر دارد؛ هرچند که دو روش‌ دیگر نیز کابرد مفیدی دارند. برای تعیین نوع و اندازه شعاع گلوگاه منافذ در پنج واحد جریانی شناسایی شده به روش شاخص زون جریان نیز از نمودار انحراف سرعت برای تعیین توزیع پیوسته نوع منافذ و داده‌های تزریق جیوه برای اندازه‌گیری شعاع گلوگاه منافذ، استفاده شده است. براساس نتایج به‌دست آمده از این مطالعه بهترین واحد‌های جریانی مطابق با انحراف سرعت مثبت و صفری است که داری منافذ حفره‌ای مرتبط به هم و بین دانه که محصول فرآیند انحلال (دیاژنز) و رسوب‌گذاری است. نتایج نشان دهنده این است که کیفیت مخزنی سازند فهلیان تحت تاثیر دو عامل دیاژنز و رسوب‌گذاری است اما در حالت کلی دیاژنز سهم بیشتری در تعیین کیفیت مخزنی سازند فهلیان داشته است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Role Pore Type and Pore Throat Size Radius in Determining the Flow Units using the Velocity Deviation Log and Core Data in Dorood Oilfield, Fahliyan Formation

نویسندگان [English]

  • mohammad derafshi 1
  • Hossain Rahimpour-Bonab 1
  • Mohammad Derafshi 2
  • amir ahmadi 3
1 School of Geology, College of Science, University of Tehran, Iran
2 Department of Geology, Faculty of Natural Sciences, University of Tabriz, Iran
3 Iranian Offshore Oil Company (IOOC), Tehran, Iran
چکیده [English]

Petrophysical rock type is a part of the reservoir that has the same properties such as geological and petrophysical characteristics. Therefore, the relationship between geological and petrophysical units can be useful for understanding the heterogeneity of the reservoir, especially in carbonates, which are highly variable from the pore type and pore throat size radius viewpoints due to the effect of diagenetic processes. The pore type and pore throat size radius as parameters which are relevant to the product of the geologic process (depositional and diagenesis) control the petrophysical properties of the reservoir. Accordingly, these two parameters are the best tools for communicating the geological and petrophysical characteristics of each petrophysical rock unit. In this paper, three methods including flow zone indicator, Winland R35, and discrete rock types (DRT) were used to determine the petrophysical rock type. The results show that the flow zone index outperforms the other methods, although the other two methods can have useful applications. To determine pore type and pore throat size radius in five flow units, which were identified by the flow zone indicator method, the velocity deviation log was used. Moreover, to determine the continuous distribution pore type the velocity deviation log was used. In addition, mercury injection data were employed to measure pore throat size radius. According to the results obtained from this study, the best flow units are in accordance with positive and zero velocity deviations, which have interconnected vuggy and intergranular which are the product of the dissolution (diagenesis) and depositional process. Finally, the results indicate that the reservoir quality of the Fahliyan Formation is affected by the two factors of diagenesis and sedimentation, but in general, diagenesis has the most contribution to determine the all reservoir quality of the formation.
 

کلیدواژه‌ها [English]

  • Petrophysical Rock Type
  • Pore Type
  • Pore Throat Size Distribution
  • Velocity Deviation Log
  • Mercury Injection Data (MICP)
[1]. Chehrazi A., Rezaee R. and Rahimpour H., “Pore-Facies as a tool for incorporation of small scale dynamic information in integrated reservoir studies,” Geophysics and Engineering, Vol. 8, pp. 202-224, 2011. ##

[2]. Ronchi P., Ortenzi A., Borromeo O., Claps M. and Zempolich W. G., “Depositional setting and diagenetic processes and their impact on the reservoir quality in the late Visean–Bashkirian Kashagan carbonate platform (Pre-Caspian Basin, Kazakhstan),” AAPG Bulletin, Vol. 94, No. 9, pp. 1313-134, 2010.##

[3]. Hollis C., “Diagenetic controls on reservoir properties of carbonate successions within the Albian–Turonian of the Arabian Plate,” Petroleum Geoscience, Vol. 17, No. 3, pp. 223-241, 2011. ##

[4]. Rustichelli A., Tondi E., Agosta F., Di Celma C. and Giorgioni M., “Sedimentologic and diagenetic controls on pore-network characteristics of Oligocene–Miocene ramp carbonates (Majella Mountain, central Italy),” AAPG Bulletin, Vol. 97, No 3, pp. 487-524, 2013.##

[5]. Moore C. H. and Wade W. J., “Carbonate reservoirs: porosity, evolution & diagenesis in a sequence stratigraphic framework: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework,” Second edition, Elsevier. P. 369, 2013. ##

[6]. Lucia F. J., “Carbonate reservoir characterization: an integrated approach,” Springer, Berlin. New York, p. 336, 2007. ##

[7]. Lucia F. J., “Carbonate reservoir characterization,” Berlin: Springer, 1999.

[8]. چهرازی ع.، توصیف جامع کمی و کیفی مخزن فهلیان در میدان درود، پایان‌ نامه دکتری تخصصی، دانشگاه تهران، ایران، 1390. ##

[9]. حسین‌زاده س.، مدل‌سازی سه بعدی اندازه شعاع گلوگاه تخلخل با تلفیق داده‌های مغزه، لاگ و لرزه، پایان نامه کارشناسی ارشد، دانشگاه خوارزمی، ایران، 1396.##

[10]. Gomez J. S., “Carbonate reservoir Rock Typing-the Link between Geology and SCAL,” Society of Petroleum Engineers, 118284, 2008. ##

[11]. Lønøy A., “Making sense of carbonate pore systems,” AAPG Bulletin, Vol. 90, pp. 1381–405, 2006. ##

[12]. Lucia F. J., “Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization,” AAPG Bulletin, Vol. 79, pp. 1275–300, 1995. ##

[13]. Lucia F. J., “Petrophysical parameters estimated from visual descriptions of carbonate rocks: A field classification of carbonate pore space,” Journal of Petroleum Technology, Vol. 35, pp. 629-637, 1983. ##

[14]. Elf Exploration Production, “Iran Dorood INT-3G study, Geo-lab analysis of well KG-18,” by Vieban, F., P. Masse and C. Maza, ref, EP/T/GGC/ORI/R.##

[15]. Gunter G. W., Spain D. R., Viro E. J., Thomas J. B., Potter G. and Willams G., “Winland pore throat prediction method - a proper retorspect : new examples from carbonats and complex systems,” SPWLA 55th Annual Logging Symposium, 18- 22 May, Abu Dhabi, United Arab Emirates, 2014. ##

[16]. Ebanks Jr W. J., “Flow unit concept-integrated approach to reservoir description for engineering projects,” AAPG (Am. Assoc.Pet. Geol.) Bull; (United States), Vol. 71, (CONF-870606-), 1987. ##

[17]. Hearn C. L., Ebanks Jr, W. J., Tye R. S. and Ranganathan V., “Geological factors influencing reservoir performance of the Hartzog Draw Field,” Wyoming. Journal of Petroleum Technology, Vol. 36, No. 08, pp. 1–335, 1984. ##

[18]. Amaefule J. O., Altunbay M., Tiab D., Kersey D. G. and Keelan D. K., “Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells,” SPE Annual Technical Conference and Exhibition, Society of Petroleum Enginee, 1993. ##

[19]. Gunter G. W., D. R. Spain, E. J. Viro, J. B. Thomas, G. Potter and J. Williams, "Winland pore throat prediction method-a proper retrospect: new examples from carbonates and complex systems," In SPWLA 55th Annual Logging Symposium, Society of Petrophysicists and Well-Log Analysts, 2014. ##

[20]. Chekani M. and Kharrat R., “An integrated reservoir characterization analysis in a carbonate reservoir,” A Case Study, Petroleum Science and Technology, Vol. 30, No. 14, pp. 1468–1485, 2012. ##

[21]. Anselmetti F. S. and Eberli G. P., “Velocity deviation log: a tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs”, AAPG Bulletin, Vol. 83, pp. 450-466, 1999. ##

[22]. قره‌‌چلو س.، کدخدایی ع.، امینی ع.، سهرابی س.، تعیین نوع منافذ در مخزن آسماری با استفاده از نگاره انحراف سرعت و تشدید مغناطیس هسته‌‌ای(NMR) در یکی از میادین جنوب غرب ایران، پژوهش نفت، شماره 82، ص15-31، .1394.##

[23]. رضایی م.، چهرازی ع.، اصول برداشت و تفسیر نگاره‌های چاه یمایی، چاپ اول، انتشارات دانشگاه تهران، 1385.##

[24]. Blienfick D. M. and Kaldi J. G., “Pore geometry: control on reservoir properties, Walker Creek Field, Columbia and Lafayette Couties, Arkansas,” Am. Assoc. Petrol. Geool, Vol. 80, pp. 1027-1044, 1996. ##

[25]. Leverett M. C., “Capillary behavior in porous solids”, Trans. of AIME., Vol. 142, pp. 52–69, 1941. ##

[26]. Purcell W. R., “Capillary pressures—their measurement using mercury and the calculation of permeability therefrom”, J Pet Technol, Vol. 1, No. 2, pp.39-48, SPE-949039-G, 1949. ##

[27]. Washburn E. W., “Note on a method of determining the distribution of pore size in a porous material,” Proceeding of the National Academy of Science, Vol. 7, pp. 115-116, 1921. ##

[28]. Dullien F. A. L. and Dhawan G. K., “Characterization of pore structure by combination of quantitative photomicrography and mercury porosimetry,” J. Collide and Interface Sci., Vol. 49, pp. 337-349, 1974.##

[29]. Choquette P. W. and Pray L. C., “Geologic nomenclature and classifcation of porosity in sedimentary carbonates,” AAPG Bulletin, Vol. 54, pp. 207–50, 1970.##

 [30]. Dunham R. J., “Classification of carbonate rocks according to depositional texture,” AAPG Mem. Vol. 1, pp. 108-121, 1962.##