بررسی عملکرد نانوکاتالیست N-TiO2 در اکسیداسیون مستقیم هیدروژن سولفید به سولفور

نوع مقاله : مقاله پژوهشی

نویسندگان

مرکز توسعه علوم و فناوری‌های نانو، پژوهشگاه صنعت نفت، تهران، ایران

چکیده

بخش عظیم ذخیره گازهای طبیعی در ایران حاوی هیدروژن سولفید است. به همین جهت، تبدیل هیدروژن سولفید به سولفور از اهمیت ویژه‌ای برخوردار است. در این مقاله ابتدا نانوذرات TiO2 به‌روش ساده و ارزان سل ژل سنتز شد و سپس نیتروژن برروی آن دوپ شد و عملکرد آنها برای اکسیداسیون مستقیم هیدروژن سولفید به سولفور عنصری مورد ارزیابی قرار داده شد. کاتالیست‌های سنتز شده به منظور بررسی ساختار و موفولوژی، مورد آنالیز XRDا، FESEMا، EDX و BET قرار داده شدند. دوپ کردن نانوذرات TiO2 با نیتروژن عملکرد بهتری (بیش از 7% افزایش) را برای حذف هیدروژن سولفید نسبت به حالت بدون دوپ نشان داده است. علت این امر می‌تواند به اثرات هم افزایی بین نیتروژن و نانوذرات دی اکسید تیتانیوم، افزایش سطح ویژه و حجم حفرات N-TiO2 و هچنین وجود گروه‌های قلیایی نیتروژن در شبکه TiO2 نسبت داد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of N-TiO2 Nanocatalyst Performance in Direct Oxidation of Hydrogen Sulfide to Sulfur

نویسندگان [English]

  • maryam Daraee
  • Alimorad Rashidi
  • abbas jorsaraei
Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran
چکیده [English]

A huge portion of natural gas reserves contains hydrogen sulfide in Iran. Therefore, the conversion of hydrogen sulfide to sulfur is important. In this paper, at first, titanium dioxide nanoparticles were synthesized with simple and inexpensive method of sol gel, and then nitrogen was doped on it, and their performance was investigated to direct hydrogen sulfide oxidation to elemental sulfur. The synthesized catalysts were characterized for the structure and morphology by XRD, FESEM, EDX, and BET analysis. Moreover, doping titanium dioxide nanoparticles with nitrogen has shown a better performance (more than 7% increases) for the removal of hydrogen sulfide than the undoped TiO2. The reason can be attributed to the synergistic effects of nitrogen and titanium dioxide nanoparticles, the increase of the specific surface area and the pore volume of N-TiO2, and also the existence of alkaline nitrogen groups in the titanium dioxide network.
 

کلیدواژه‌ها [English]

  • Hydrogen Sulfide
  • Catalyst
  • Direct Oxidation
  • Sulfur and Titanium Dioxide
[1]. Wiheeb A. D., Shamsudin I. K., Ahmad M. A., Murat M. N., Kim J. and Othman M. R., “Present technologies for hydrogen sulfide removal from gaseous mixtures,” Rev. Chem. Eng., Vol. 29, Issue 6, pp. 449-470, 2013. ##
[2]. Bhattacharya D., Turton R. and Zitney S. E., “Steady-state simulation and optimization of an integrated gasification combined cycle power plant with CO2 capture,” Ind. Eng. Chem. Res., Vol. 50, pp. No. 3, 1674-1690, 2011. ##
[3]. Puchyr D. M., Mehrotra A. K., Behie L. A. and Kalogerakis N., “Hydrodynamic and kinetic modelling of circulating fluidized bed reactors applied to a modified claus plant,” Chem. Eng. Sci., Vol. 51, pp. 5251-5262, 1996. ##
[4]. Keller N., Huu C. P., Crouzet C., Ledoux M. J., Poncet S. S. and Nougayrede J. B., “Direct oxidation of H2S into S. New catalysts and processes based on SiC support,” Catalysis Today, Vol. 53, pp. 535-542, 1999. [5]. ZhangX., TangY., QuS., DaJ. And HaoZ., “H2S‑selective catalytic oxidation: catalysts and processes,” ACS Catal, Vol. 5, pp. 1053-1067, 2015. ##
[6]. Sun F., Liu J., Chen H., Zhang Z., Qiao W. and Long D., “Nitrogen-rich mesoporous carbons: highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S,” ACS Catal., Vol. 3, pp. 862-870, 2013. ##
[7]. Xiao Y., Wang S., Wu D. and Yuan Q., “Catalytic oxidation of hydrogen sulfide over unmodified and impregnated activated carbon,” Sep. Purif. Technol, Vol. 59, pp. 326-332, 2008. ##
[8]. Xiao Y., Wang S., Wu D. and Yuan Q. J., “Experimental and simulation study of hydrogen sulfide adsorption on impregnated activated carbon under anaerobic conditions,” Hazard. Mater, Vol. 153, pp. 1193-1200, 2008. ##
[9]. Reyes-Carmona A., Soriano M. D., Nieto J. M. L. P., Jones D. J., Jiménez-Jiménez J. and Jiménez-LópezA., “Iron-containing SBA-15 as catalyst for partial oxidation of hydrogen sulfide,” Catal. Today, Vol. 210, pp. 117-123, 2013. ##
[10]. Soriano M. D., Nieto J. M. L. P., Ivars F., Concepción P. and Rodríguez-Castellón E., “Alkali-promoted V2O5 catalysts for the partial oxidation of H2S to sulphur,” Catal. Today, Vol. 192, pp. 28-35, 2012. ##
[11]. Soriano M. D., Rodríguez-Castellón E., García-González E. and Nieto J. M. L. P., “Catalytic behavior of NaV6O15 bronze for partial oxidation of hydrogen sulfide,” Catal. Today, Vol. 238, pp. 62-68, 2014. ##
[12]. Wang SH., Wang Y. B., Dai Y. M. and Jehng J. M., “Preparation and characterization of hydrotalcite-like compounds containing transition metal as a solid base catalyst for the transesterification,” Appl. Catal. A, General, Vol. 439-440, pp. 134-141, 2012. ##
[13]. Zhang X., Wang Z., Qiao N. L., Qu S. Q. and Hao Z. P., “Selective catalytic oxidation of H2S over well-mixed oxides derived from Mg2AlxV1–x layered double hydroxides,” ACS Catal., Vol. 4, pp. 1500-1510, 2014. ##
[14]. Chun S. W., Jang J. Y., Parka D. W., Woo H. C. and Chungc J. S., “Selective oxidation of H2S to elemental sulfur over TiO2/SiO2 catalysts,” Applied Catalysis B: Environmental., Vol. 16, pp. 235-243, 1998. ##
[15]. Kang D. H., Kim M. and Park D. W., “Selective oxidation of H2S to sulfur over CeO2-TiO2 catalyst,” Korean Chem. ENG., Vol. 33, Issue 3, pp 838–843, 2015. ##
[16]. Liu C., Zhang R., Wei S., Wang J., Liu Y. and Li M., “Selective removal of H2S from biogas using a regenerable hybrid TiO2/Zeolite composite,” Fuel, Vol. 157, pp. 183-190, 2015. ##
[17]. Tasdemir H. M., Yasyerli S. and Yasyerli A., “Selective catalytic oxidation of H2S to elemental sulfur over titanium based Ti-Fe, Ti-Cr and Ti-Zr catalysts,” International Journal o f Hydrogen Energy, Vol. 40, Issue 32, pp. 9989-10001, 2015. ##
[18]. Cavalcante R. P., Dantas R. F., Bayarri B., Gonzalez O., Giménez J. and Esplugas S., “Synthesis and characterization of B-doped TiO2 and their performance for the degradation of metoprolol,” Catalysis Today, Vol. 252, pp. 27-34, 2015. ##
[19]. Diker H., Varlikli C., Mizrak M. and Dana A., “Characterizations and photocatalytic activity comparisons of N-doped nc-TiO2 depending on synthetic conditions and structural differences of amine sources,” Energy, Vol. 36, pp. 1243-1254, 2011. ##
[20]. Shao P., Tian J., Zhao Z., Shi W., Gao S. and CuiF., “Amorphous TiO2 doped with carbon for visible lightphotodegradation of rhodamine B and 4-chlorophenol,” Applied Surface Science, Vol. 324, pp. 35-43, 2015. ##
[21]. Yu W., Liu X., Pan L., Li J., Liu J. and Zhang J., “Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2,” Applied Surface Science, Vol. 319, pp. 107-112, 2014. ##
[22]. Kalantari K, Kalbasi M, Sohrabi M. and Royaee S. J., “Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light,” Ceramic International, Vol. 42, Issue 13, pp. 14834-14842, October 2016. ##
[23]. Ba H., Duong-Viet C., Liu Y., Nhut J. M., Granger P. and Ledoux M. J., “Nitrogen-doped carbon nanotube spheres as metal-free catalysts for the partial oxidation of H2S,” C. R. Chimie, Vol. 19, pp. 1303-1309, 2016. ##
[24]. Chizari K, Deneuve A., Ersen O., Florea I., Liu Y. and EdouardD., “Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for selective oxidation,” ChemSusChem, Vol. 5, pp. 102-108, 2012. ##
[25]. Duong-Vieta C., Truong-Phuoc L., Tran-Thanh T., Nhuta J. M., Nguyen-Dinh L., Janowska I., “Nitrogen-doped carbon nanotubes decorated silicon carbide as ametal-free catalyst for partial oxidation of H2S,” Applied Catalysis A: General, Vol. 482, pp. 397–406, 2014. ##
[26]. SuD S., Zhang J., Frank B., Thomas A., Wang X. and Paraknowitsch J., “Metal-free heterogeneous catalysis for sustainable chemistry,” ChemSusChem, Vol. 3, pp. 169-180, 2010. ##
[27]. Dhaya l. M., Sharma S. D., Kant C., Saini K. K. and Jain S. C., “Role of Ni doping in surface carbon removal and photo catalytic activity of nano-structured TiO2 film,” Surface Science, Vol. 602, pp. 1149-1154, 2008. ##
[28]. Kim D. H., Choi D. K., Kim S. J., Lee K. S., “The effect of phase type on photocatalytic activity in transitionmetal doped TiO2 nanoparticles,” Catalysis Communications, Vol. 9, pp. 654-657, 2008. ##
[29]. Yu J., Hai Y. and Cheng B., “Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification”, Journal of Physical Chemistry Vol. 115, pp. 4953-4958, 2011. ##
[30]. Daraee M., Baniadam M., Rashidi A. and Maghrebi M., “Synthesis of TiO2-CNT hybrid nanocatalyst and its application in direct oxidation of H2S to S,” Chemical Physics, Vol. 511, pp. 7-19, 2018. ##
[31]. Cheng X., Yu X. and Xing Z., “Enhanced photoelectric property and visible activity of nitrogen doped TiO2 synthesized from different nitrogen dopants,” Applied Surface Science, Vol. 268, pp. 204-208, 2013. ##
[32]. Keramati N., Nasernejad B. and Fallah N., “Synthesis of N-TiO2: Stability and visible light activity for aqueous styrene degradation,” Dispersion Science and Technology, Vol. 35, pp. 1476-1482, 2014. ##