اثر پایه اسپینلی بر عملکرد کاتالیست‌های فرآیند ریفورمینگ متانول برای تولید هیدروژن در راکتور بستر ثابت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده شیمی، دانشگاه شهید بهشتی، تهران، ایران

2 پژوهشکده گاز، پژوهشگاه صنعت نفت، تهران، ایران

10.22078/pr.2019.3547.2619

چکیده

در این مقاله عملکرد کاتالیست‌های (M=Cu,Cu-Ni)اM/ZnLaAlO4 اγ-Al2O3 and/اM در فرآیند ریفورمینگ متانول در محدوده دمایی 200 تا C350 و خوراک متانول با دبی GHSV 11500 h-1 در شرایط اتمسفری، در یک راکتور کوارتزی بستر ثابت بررسی شد. برای ارزیابی بهتر مساحت سطح، مورفولوژی و ساختار کریستالی کاتالیست‌های سنتزی توسط آنالیزهایICP و اTEM،ا BETا، FESEM،اFTIR، اXRD واTPR مورد مطالعه قرار گرفت. نتایج نشان داد که کاتالیست‌های دارای پایه اسپینلی ZnLaAlO4 نسبت به کاتالیست‌های با پایه γ-Al2O3 دارای راندمان و فعالیت بالا، دمای احیای پایین و حجم حفرات بیشتر است این را می‌توان به‌وجود عناصر Laا، Znا، Al و تشکیل فاز مشترک این فلزات نسبت داد که نتیجه آن توزیع بهتر و مناسب‌تر ذرات فاز فعال برروی کاتالیست پایه ZnLaAlO4 است. به‌عنوان بزرگ‌ترین مزیت میزان گزینش‌پذیری نسبت به H2 برای کاتالیست ZnLaAlO4ا/Cu-Niحدود 18% بیش از کاتالیست‌های تلقیح شده برروی الومینا است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Spinel Support on the Catalytic Performance of Methanol Reforming Catalysts for Hydrogen Production in a Fixed Bed Reactor

نویسندگان [English]

  • yasin khani 1
  • Farzad Bahadoran 2
  • Nasser Safari 1
  • Saeed Soltanali 2
  • Jafar Sadeghzadeh 2
  • Akbar Zamaniyan 2
1 Department of Chemistry, Shahid Beheshti University, Tehran, Iran
2 Gas Refining Technologies Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
چکیده [English]

The performance of M/ZnLaAlO4 and M/γ–Al2O3 catalysts (M=Cu,Cu–Ni)  in methanol reforming process in the temperature range of 200-350 oC, methanol feed GHSV of 11500 h-1, and atmospheric pressure in a fixed bed quartz reactor has been investigated in this work. Surface area, morphology, and crystal structure of the synthetic catalysts were studied using BET, FESEM, FIR, XRD, and TPR analyses for better assessment of the catalysts. The results have shown that the spinel based M/ZnLaAlO4 catalyst possesses high yield, very high catalytic activity, low reduction temperature, and large pore sizes, giving a higher percentage of loading and better distribution of the active metal. The new support catalyst selectivity is less carbon monoxide. Finally, the bimetallic catalyst, nickel leads to better dispersion of copper particles and increases the activity but also high selectivity to the carbon monoxide.

کلیدواژه‌ها [English]

  • Combustion Synthesis
  • Catalyst
  • Methanol Conversion
  • Hydrogen
  • Spinel Support

[1]. Rodríguez R. A., Virguez  E. A., Rodriguez P. A. and Behrentz E., “Influence of driving patterns on vehicle emissions: A case study for Latin American cities,” Transportation Research Part D: Transport and Environment, Vol. 43, pp.192-206, 2016. ##

[2]. Ghadikolaei M. A., “Effect of alcohol blend and fumigation on regulated and unregulated emissions of IC engines a review,” Renewable and Sustainable Energy Reviews, Vol. 57, pp.1440-1495, 2016. ##

[3]. Cao X., Yao Z., Shen X., Ye Y. and Jiang X., “On-road emission characteristics of VOCs from light-duty gasoline vehicles in Beijing,” China. Atmospheric Environment, 124, pp.146-155, 2016. ##

[4]. Speder J., Zana A. and Arenz M., “The colloidal tool-box approach for fuel cell catalysts: Systematic study of perfluorosulfonate-ionomer impregnation and Pt loading,” Catalysis Today, Vol. 262, pp. 82-89, 2016. ##

[5]. Pătru A., Rabis A., Temmel S. E., Kotz R. and Schmidt T. J., “Pt/IrO2–TiO2 cathode catalyst for low temperature polymer electrolyte fuel cell–Application in MEAs, performance and stability issues,” Catalysis Today, Vol. 262, pp. 161-169, 2016. ##

[6]. Olah G. A., “Beyond oil and gas: the methanol economy,” Angewandte Chemie International Edition, Vol. 44, No. 18, pp. 2636-2639, 2005. ##

[7]. Basile A., Parmaliana A., Tosti S., Iulianelli A., Gallucci F., Espro C. and Spooren J., “Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst,” Catalysis Today, Vol. 137, No. 1, pp. 17-22, 2008. ##

[8]. Purnama H., Girgsdies F., Ressler T., Schattka J. H., Caruso R. A., Schomäcker R. and Schlögl,R., “Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol,” Catalysis Letters, Vol. 94, Issue 1-2, pp. 61-68, 2004. ##

[9]. Sá S., Sousa J. M. and Mendes A., “Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst, part I: Kinetic modelling,” Chemical Engineering Science, Vol. 66, No. 20, pp. 4913-4921, 2011. ##

[10]. Sá S., Silva H., Brandão L., Sousa J. M. and Mendes A., “Catalysts for methanol steam reforming—a review,” Applied Catalysis B: Environmental, Vol. 99, Issue 1-2, pp. 43-57, 2010. ##

[11]. Agrell J., Birgersson H. and Boutonnet M., “Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation,” Journal of Power Sources, Vol. 106, Issue 1-2, pp. 249-257, 2002. ##

[12]. Turco M., Bagnasco G., Cammarano C., Senese P., Costantino U. and Sisani M., “Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix,” Applied Catalysis B: Environmental, Vol. 77, Issue 1-2, pp. 46-57, 2007. ##

[13]. Cao W., Chen G., Li S. and Yuan Q., “Methanol-steam reforming over a ZnO–Cr2O3/CeO2–ZrO2/Al2O3 catalyst,” Chemical Engineering Journal, Vol. 119, Issue 2-3, pp. 93-98, 2006. ##

[14]. Yao C. Z., Wang L. C., Liu Y. M., Wu G. S., Cao Y., Dai W. L., He H. Y. and Fan K. N. “Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts,” Applied Catalysis A: General, Vol. 297, No. 2, pp. 151-158, 2006.

[15]. Karim A. M., Conant T. and Datye A. K., “Controlling ZnO morphology for improved methanol steam reforming reactivity,” Physical Chemistry Chemical Physics,  Vol. 10, No. 36, pp. 5584-5590, 2008. ##

[16]. Lin S. S. Y., Thomson W. J., Hagensen T.J. and Ha S. Y., “Steam reforming of methanol using supported Mo2C catalysts,” Applied Catalysis A: General, Vol. 318, pp. 121-127, 2007. ##

[17]. Conant T., Karim A. M., Lebarbier V., Wang Y., Girgsdies F., Schlögl R. and Datye A., “Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol,” Journal of Catalysis, Vol. 257, No. 1, pp. 64-70, 2008. ##

[18]. Chang C. C., Wang J. W., Chang C. T., Liaw B. J. and Chen Y. Z., “Effect of ZrO2 on steam reforming of methanol over CuO/ZnO/ZrO2/Al2O3 catalysts,” Chemical Engineering Journal, Vol. 192, pp. 350-356, 2012. ##

[19]. Huang G., Liaw B. J., Jhang C. J. and Chen Y. Z., Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. Applied Catalysis A: General, Vol. 358, No. 1, pp.7-12, 2009. ##

[20]. Armbruester M., Behrens M., Cinquini F., Föttinger K., Grin Y., Haghofer A., Kloetzer B., Knop‐Gericke A., Lorenz H., Ota A. and Penner S., “How to control the selectivity of palladiumbased catalysts in hydrogenation reactions: the role of subsurface chemistry,” Chem. Cat. Chem., Vol. 4, No. 8, pp. 1048-1063, 2012. ##

[21]. Kurtz M., Wilmer H., Genger T., Hinrichsen O. and Muhler M., “Deactivation of supported copper catalysts for methanol synthesis,” Catalysis Letters, Vol. 86, Issue 1-3, pp. 77-80, 2003.  ##

[22]. Khzouz M., Wood J., Pollet B. and Bujalski W., “Characterization and activity test of commercial Ni/Al2O3, Cu/ZnO/Al2O3 and prepared Ni–Cu/Al2O3 catalysts for hydrogen production from methane and methanol fuels,” international journal of hydrogen energy, Vol. 38, No. 3, pp. 1664-1675, 2013. ##

[23]. Khani Y., Shariatinia Z. and Bahadoran F., “High catalytic activity and stability of ZnLaAlO4 supported Ni, Pt and Ru nanocatalysts applied in the dry, steam and combined dry-steam reforming of methane,” Chemical Engineering Journal, Vol. 299, pp. 353-366, 2016. ##

[24]. Wei X. and Chen D., “Synthesis and characterization of nanosized zinc aluminate spinel by sol–gel technique,” Materials Letters, Vol. 60, Issue 6, pp. 823-827, 2006. ##

[25]. Khoshbin R. and Haghighi M., “Direct syngas to DME as a clean fuel: the beneficial use of ultrasound for the preparation of CuO–ZnO–Al2O3/HZSM-5 nanocatalyst,” Chemical Engineering Research and Design, Vol. 91, Issue 6, pp. 1111-1122, 2013. ##

[26]. Bachiller-Baeza B., Rodriguez-Ramos I. and Guerrero-Ruiz A., “Interaction of carbon dioxide with the surface of zirconia polymorphs,” Langmuir, Vol. 14, Issue 13, pp. 3556-3564, 1998. ##

[27]. Deshmane V. G., Abrokwah R. Y. and Kuila D., “Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: Effect of metal-support interactions on steam reforming of methanol,” Journal of Molecular Catalysis A: Chemical, Vol. 408, pp. 202-213, 2015. ##

[28]. De Rogatis L., Montini T., Cognigni A., Olivi L. and Fornasiero P., “Methane partial oxidation on NiCu-based catalysts,” Catalysis Today, Vol. 145, Issue 1-2, pp. 176-185, 2009.

[29]. Lu J., Li X. He S., Han C., Wan G., Lei Y., Chen R., Liu P., Chen K., Zhang L. and Luo Y., “Hydrogen production via methanol steam reforming over Ni-based catalysts: Influences of Lanthanum (La) addition and supports,” International Journal of Hydrogen Energy, Vol. 42, No. 6, pp.3647-3657, 2017.

[30]. Ajamein H., Haghighi M., Shokrani R. and Abdollahifar M., “On the solution combustion synthesis of copper based nanocatalysts for steam methanol reforming: Effect of precursor, ultrasound irradiation and urea/nitrate ratio,” Journal of Molecular Catalysis A: Chemical, Vol. 421, pp. 222-234, 2016.

[31]. Sá S., Silva H., BrandãoL.  Sousa J. M. and Mendes A., “Catalysts for methanol steam reforming—a review,” Applied Catalysis B: Environmental, Vol. 99, Issue 1-2, pp.43-57, 2010.

[32]. Abrokwah R. Y., Deshmane V. G. and Kuila D., “Comparative performance of M-MCM-41 (M: Cu, Co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol,” Journal of Molecular Catalysis A: Chemical, Vol. 425, pp. 10-20, 2016.

[33]. Kaftan A., Kusche M., Laurin M., Wasserscheid P. and Libuda J., “KOH-promoted Pt/Al2O3 catalysts for water gas shift and methanol steam reforming: An operando DRIFTS-MS study,” Applied Catalysis B: Environmental, 201, pp.169-181, 2017.

[34]. Aouad S., Gennequin C., Mrad M., Tidahy H. L., Estephane J., Aboukaïs A. and Abi‐Aad E., “Steam reforming of methanol over ruthenium impregnated ceria, alumina and ceria–alumina catalysts,” International Journal of Energy Research, Vol. 40, Issue 9, pp.1287-1292, 2016.