طراحی سامانه اندازه‌گیری آلاینده‌های BTEXs در خروجی گاز اگزوز برخی از خودروهای داخلی و خارجی در شهر تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پژوهش تجزیه‌های دستگاهی، مرکز پژوهش تجزیه و ارزیابی مواد، پژوهشگاه صنعت نفت، تهران، ایران

2 پژوهشکده محیط زیست و بیوتکنولوژی، پژوهشگاه صنعت نفت، تهران، ایران

3 شرکت ملی پالایش و پخش فرآورده‌های نفتی ایران، مدیریت پژوهش و فناوری، تهران، ایران

4 گروه پژوهش تجزیه های دستگاهی، مرکز پژوهش تجزیه و ارزیابی مواد، پژوهشگاه صنعت نفت، تهران، ایران

چکیده

در این مقاله، غلظت آلاینده‌های بنزن، تولوئن، اتیل بنزن و زایلن‌ها در خروجی گاز اگزوز برخی از خودروهای پرتعداد داخلی و خارجی در شهر تهران اندازه‌گیری و با یکدیگر مقایسه شدند. بدین منظور 7 گروه خودرو بنزینی داخلی شامل پراید، پژو 405، تندر (90 L)، پژو 206، سمند بدون کاتالیزور، سمند با کاتالیزور، تیبا و خودرو خارجی مزدا 3 انتخاب و توسط یک فرآیند مشخص و درحالت درجا، از آنها نمونه‌برداری شد. در فرآیند اندازه‌گیری ابتدا آلودگی‌های مذکور برروی بستر کربن فعال جذب و پس از استخراج با دی‌سولفید کربن توسط دستگاه‌های کروماتوگرافی گازی با آشکارسازهای جرمی و یونش شعله‌ای شناسایی و اندازه‌گیری شدند. .نتایج به‌دست آمده به‌وضوح نشان‌دهنده این مطلب است که غلظت آلاینده‌های مورد بررسی در اگزوز خودروهای داخلی در مقایسه با خودرو خارجی بسیار بالاتر بوده است (متوسط غلظت BTEX در اگزور خودروی پراید ppm 3/13 در مقابل ppm 11/0 برای مزدا 3 بود). در بین خودروهای داخلی پس از پراید، خودروی پژو 405 بیشترین میزان (ppm 31/6 غلظت BTEX در اگزوز) و خودروی سمند کاتالیزوردار (ppm 49/1 BTEX در اگزوز) کم‌ترین میزان این آلاینده‌ها را نشر می‌کنند. با توجه به تعدد خودروهای داخلی نسبت به خودروهای خارجی در ایران و طبیعتاً در شهر تهران، انتظار می‌رود میزان این ترکیبات در هوای تهران و سایر شهرهای بزرگ از حدود مجاز هوای محیط (متوسط سالیانه μg/m3 5) بالاتر باشد که نتایج سایر تحقیقات نیز این مطلب را تأیید می‌کنند. نتایج این تحقیق ارزیابی اولیه معناداری، برای اجرای تحقیقات تکمیلی، پیش روی سازمان‌های متولی بهبود کیفیت محیط زیست، تولید کنندگان سوخت و شرکت‌های خودروسازی قرار خواهد داد.
 

کلیدواژه‌ها


عنوان مقاله [English]

System Designed to Measure BTEXs Pollutants in Exhaust Gas Output of Domestic and Foreign Cars in Tehran

نویسندگان [English]

  • hojjat kazemi 1
  • alireza dahaghin 2
  • hadi ghanbarnezhad 1
  • tahereh poursaberi 1
  • maryam sadat hosseini 3
  • farnood farzam 4
  • sima ghadernia 4
  • Hossein kazemi 4
  • Morteza afshari 1
1 Analytical Chemistry Research Group, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
2 Environment and Biotechnology Department, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
3 National Iranian Oil Refining and Distribution Company, Research and Technology Directorate, Tehran, Iran
4 Analytical Chemistry Research Group, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
چکیده [English]

In this report, the amount of emissions of benzene, toluene, ethylbenzene and xylenes (BTEXs) in the exhaust gas of numerous domestic and foreign automobiles including PrideTM, Peugeot 405TM, Thunder (L90) TM, Peugeot 206TM TibaTM, and Mazda 3TM and SamandTM both in the absence and presence of a catalyst, were measured in the Tehran city. To this end, first the BTEXs content of the exhaust gases was absorbed on activated carbon cartridges and then extracted by using solvent system. Finally, the concentration of the extracted pollution was identified and measured through gas chromatography Equipped with a flame ionization detector (GC/FID). The results clearly show that the volume of this emitted pollution of domestic automobiles comparatively is much higher than that of the foreign cars tested (The average BTEX concentration in the exhaust car of the pride vehicle was 13.3 parts per million versus 0.1 parts per million for the Mazda3.). From the domestic cars after PrideTM, Peugeot 405TM had the highest (6.13 parts per million BTEX concentrations in the exhaust), and SamandTM with a catalyzer system (1.49 parts per million BTEX concentrations in the exhaust) had the lowest amounts of the emitted pollutants. Due to the multiplicity of domestic vehicles in comparison with foreign cars in Iran and naturally in Tehran, it is expected that these compounds in the air of Tehran and other large cities will be higher than the permissible ambient air (average annual rate of 5 micrograms per m3). Finally, the results of other investigations confirm this. In addition, the results of this research will provide a meaningful initial assessment for the implementation of complementary research to lead organizations responsible for improving the quality of the environment, fuel suppliers and care companies.
 

کلیدواژه‌ها [English]

  • BTEXs
  • Gasoline Engine
  • Exhaust Gas
  • Tehran
  • Air Pollutants
[1]. غیاث‌الدین م.، "آلودگی هوا،" ویرایش اول، انتشارات دانشگاه تهران، 1385. ##
[2]. Gist G. L. and Burg J. R., “Benzene: a review of the literature from a health effects perspective,” Toxicol. Ind. Health., Vol. 13, No. 6, pp. 661–714, 1997.##
[3]. “Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Benzene (Draft),” U.S. Public Health Service, U. S. Department of Health and Human Services, Atlanta, 2007.##
[4]. Hinwood A. L., Rodriguez C., Runnion T., Farrar D., Murray F. and Horton A., “Risk factors for increased BTEX exposure in four Australian cities,” Chemosphere., Vol. 66, No. 3, pp. 533–541, 2007.##
[5]. Guo H., Lee S. C., Chan L. Y. and Li W. M., “Risk assessment of exposure to volatile organic compounds in different indoor environments,” Environ. Res., Vol. 94, No. 1, pp. 57–66, 2004. ##
[6]. Mitra S. and Roy P., “BTEXs: A Serious Ground-water Contaminant,” Res. J. Environ. Sci., Vol. 5, No. 5, pp. 394–395, 2011.##
[7]. دویل م. ف. ز.، رستمی ر. ا. و زارعی ا.، "تغییرات روزانه غلظت ترکیبات BTEXs در هوای شهر تهران،" مجله دانشگاه علوم پزشکی بابل، دوره 14، شماره 1، صفحات 50–55، 1390. ##
[8]. راستکاری ن.، پناه ف. ا.، یونسیان م. و ایزدپناه ف.، "بررسی میزان مواجهه با بنزن در کارگران پمپ بنزین از طریق ارزیابی محیطی و پایش شاخص زیستی،" مجله سلامت و محیط، دوره 8، شماره 2، صفحات 163–170، 1394.##
[9]. رﯾﺴﻤﺎﻧﭽﯿﺎن م.، ﮔﺮﺳﯿﻮ م.، ﭘﻮرزﻣﺎﻧﯽ ح. ر. و ﻣﺮآﺛﯽ م. ح.، "ﺑﺮرﺳﯽ ﺗﺄﺛﯿﺮﺗﺰﺋﯿﻨﺎت داﺧﻠﯽ و اﺳﺘﻌﻤﺎل ﺧﻮﺷﺒﻮﮐﻨﻨﺪهﻫﺎی درون ﺧﻮدرو ﺑﺮ ﻏﻠﻈﺖ ﺗﻮﻟﻮﺋﻦ و اﺗﯿﻞ ﺑﻨﺰن در ﺧﻮدروی ﺗﻨﺪر،" مجله ﺑﻬﺪاﺷﺖ ﺣﺮﻓﻪای، دوره 1، شماره 1، صفحات 1–7، 1393.##
[10]. سمرقندی م. و جمال ع.، "بررسی میزان مواجهه فردی با ترکیبات BTEX در سفره خانه های سنتی شهر همدان در سال 1392،" مجله دانشگاه علوم پزشکی و خدمات بهداشتی درمانی همدان، دوره 21، شماره 3، صفحات 231–238، 1393.##
[11]. نیازی ص.، حسنوند م. ص.، آرا ش. ن.، نبی‌زاده ر.، مکمل ع. و ندافی ک.، "پایش بیومارکرهای ادراری MTBE ،ETBE ،TAME و BTEX در افراد با مواجهه غیر شغلی،" مجله سلامت و بهداشت، دوره 6، شماره 1، صفحات 77-85، 1394.##
[12]. Poorfakhraei A., Tayarani M. and Rowangould G. “Evaluating health outcomes from vehicle emissions exposure in the long range regional transportation planning process,” J. Transp. Heal. Vol.6, No. 1, pp. 501–515, 2017. ##
[13]. Westphal G. A., Krahl J., Brüning T., Hallier E. and Bünger J., “Ether oxygenate additives in gasoline reduce toxicity of exhausts,” Toxicology, Vol. 268, No. 3, pp. 198-203, 2010.##
[14]. DieselNet.EU: Cars andLightTrucks – “Emission standards,” 2017. https://www.dieselnet. com/standards/eu/ld.php, Accessed date: 5 February 2018. ##
[15]. Lan T. T. N., Minh P. A., “BTEX pollution caused by motorcycles in the megacity of HoChiMinh,” J. Environ. Sci. (China), Vol. 25, No. 2, pp. 348–356, 2013. ##
[16]. Macedo V. C., Daemme L. C., Penteado R., da Motta H. N. and Corrêa S.M., “BTEX emissions from flex fuel motorcycles,” Atmos. Pollut. Res., Vol. 8, No. 6, pp. 1160-1169, 2017. ##
[17]. Truc V. T. Q. and Kim Oanh N. T., “Roadside BTEX and other gaseous air pollutants in relation to emission sources,” Atmos. Environ., Vol.41, No. 36, pp. 7685-7697, 2007. ##
[18]. Atkinson R., “Gas-phase tropospheric chemistry of organic compounds: a review,” Atmos. Environ. Vol. 41, No. 1, pp. 200-240, 2007. ##
[19]. Zhang Y., Mu Y., Liu J. and Mellouki A., “Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing,” China. J. Environ. Sci., Vol. 24, No. 1, pp. 124-130, 2012. ##
[20]. Dasch J. M. and Williams R. L., “Benzene exhaust emissions from in-use General Motors vehicles,” Environ., Sci. Technol., Vol. 25, No. 5, pp. 853–857, 1991.##
[21]. Muttamara S., Leong S. T. and Lertvisansak I., “Assessment of benzene and toluene emissions from automobile exhaust in bangkok,” Environ. Res., Vol. 81, No. 1, pp. 23–31, 1999. ##
[22] .Heeb N. V. and Forss A. M., Bach C., “Fast and quantitative measurement of benzene, toluene and C2-benzenes in automotive exhaust during transient engine operation with and without catalytic exhaust gas treatment,” Atmos. Environ, Vol. 33, No. 2, pp. 205–215, 1999. ##
[23]. Saxer C. J., Forss A. M., Rüdy C. and Heeb N. V., “Benzene, toluene and C2-benzene emissions of 4- stroke motorbikes: Benefits and risks of the current TWC technology,” Atmos. Environ, Vol. 40, No. 31, pp. 6053–6065, 2006.##
[24]. نادری م. و مهسا ر.، "بررسی اثرات کیفیت بنزین و دیزل بر انتشار آلاینده‌ها از خودروهای سواری سنگین در تهران،" سایت خبر گزاری تسنیم، 1392.##
[25]. میرشی س.، اهنگر ف. و حسینی و.، "بررسی تاثیر الگوی رانندگی بر میزان آلایندگی تولیدی توسط خودروها در شهر تهران،" دوازدهمین کنفرانس بین‌المللی مهندسی حمل و نقل و ترافیک، 1 تا 2 اسفند 1391، تهران . ##
[26]. Amini H., Hosseini V., Schindler C., Hassankhany H., Yunesian M., Henderson S. B. and Künzli N., Spatiotemporal description of BTEX volatile organic compounds in a Middle Eastern megacity: Tehran study of exposure prediction for environmental health research (Tehran SEPEHR), Environmental pollution,  Vol. 226, pp. 219-229, 2017.##
[27]. Abtahi M., Fakhri Y., Gea Oliveri C., Ferrante M., Taghavi M., Tavakoli J., Heshmati A., Keramati H., Moradi B., Amanidaz N. and Mousavi Khaneghah A., “The concentration of BTEX in the air of Tehran: a systematic review-meta analysis and risk assessment,” Int. J. Environ. Res. Public Health, Vol. 15, No. 9, pp. 2–16, 2018. ##
[28]. Hajizadeh Y., Mokhtari M., Faraji M., Mohammadi A., Nemati S., Ghanbari R., Abdolahnejad A., Fouladi Fard R., Nikoonahad A., Jafari N. and Miri M. “Trends of BTEX in the central urban area of Iran: A preliminary study of photochemical ozone pollution and health risk assessment,” Atmos. Pollut. Res. Vol. 9, No. 2, pp. 220-229, 2018. ##