بهینه‌سازی چند هدفه و تحلیل اکسرژی فرآیند مایع‌سازی گاز طبیعی با مبرد آمیخته

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده نفت و مهندسی شیمی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

10.22078/pr.2019.3919.2784

چکیده

مبرد آمیخته در فرآیند مایع‌سازی گاز طبیعی به صورت وسیع مورد استفاده قرار می‌گیرد و این امر باعث می‌شود تا بهینه‌سازی پارامترهای اثرگذار در این فرآیند مهم باشد. در این پژوهش یک فرآیند پریکو با مبرد آمیخته به کمک الگوریتم ژنتیک چندهدفه با رتبه‌بندی نامغلوب 2 بهینه‌سازی شده است. در این بهینه‌سازی انرژی مصرفی و سطح مبدل حرارتی به صورت هم‌زمان بهینه شدند تا اثر نامطلوب افزایش سطح مبدل حرارتی ناشی از بهینه‌سازی تک هدفه انرژی مصرفی که در مقالات پیشین مشاهده شد، برطرف شود. دبی‌های مولی ترکیبات مبرد آمیخته شامل متان، اتیلن، پروپان، ایزوپنتان و نیتروژن، فشار جریان‌های خروجی از کمپرسور اول و دوم و فشار جریان خروجی از شیرفشارشکن چرخه سردسازی به عنوان متغیرهای بهینه‌سازی درنظر گرفته شدند. همچنین توابع هدف درنظرگرفته شده نسبت به متغیرهای بهینه‌سازی تحلیل حساسیت شدند. جواب‌های بهینه‌سازی به صورت مجموعه‌ای از جواب‌های بهینه به نام جبهه بهینه پارتو ارائه شدند که نتایج آن، تضاد دو تابع هدف را به خوبی نشان می‌دهند. در ادامه نتایج بهینه‌سازی چندهدفه با نتایج کمینه‌سازی تک هدفه انرژی مصرفی مقایسه شدند. نتایج مقایسه نشان می‌دهند که سطح مبدل حرارتی در بهینه‌سازی چندهدفه به میزان 54% نسبت به بهینه‌سازی تک‌هدفه (کمینه‌سازی انرژی) کاهش یافته است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Multi-Objective Optimization and Exergy Analysis of Liquefaction of Natural Gas Process with Mixed Refrigerant

نویسندگان [English]

  • samira ahmadi
  • mohamad reza jafari nasr
Chemical Engineering Department, College of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Mixed refrigerant is widely used in the natural gas liquefaction process, and this makes it important to optimize the parameters affecting this process. In this research, a PRICO process with mixed refrigerant was optimized by using Non-dominated Sorting Genetic Algorithm (NSGAII). In this optimization, energy consumption and the surface of heat exchanger were optimized simultaneously to eliminate the adverse effect of the surface of heat exchanger increase due to the single-objective optimization of the energy consumption observed in the previous papers. Molar flow rates of mixed refrigerant compounds including methane, ethylene, propane, isopentane and nitrogen, outlet pressures of the first and second compressors and outlet pressure of the cooling cycle valve were considered as optimization variables. Also, the considered objective functions were performed on sensitive analysis towards optimization variables Moreover, the optimization solutions were presented as a set of optimal solutions called Pareto optimal fronts whose results showed the contradiction of the two objective functions well. Afterwards, multi-objective optimization results were compared with single-objective minimization results. Ultimately, comparison results showed that the surface of heat exchanger in multi-objective optimization was reduced by 54% in comparison with  single-objective optimization (energy optimization).
 

کلیدواژه‌ها [English]

  • Natural Gas liquefaction
  • PRICO Process
  • Genetic Algorithm
  • Multi-objective Optimization
  • Exergy analysis

[1] نیک‌آذر م.، کی‌نژاد ک.، "نفت و گاز پیدایش – پالایش"، تهران: علوم کاربردی، 1391.##

[2] اسلم‌بخش ا.، "بررسی فنی- اقتصادی فرآیندهای SMR و N2 Expansion برای تولید LNG در مقیاس کوچک"، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، ایران، 1393.#3

[3] Aspelund A., Gundersen T., Myklebust J., Nowak M.P. and Tomasgard A., “An optimization-simulation model for a simple LNG process,” Computers and Chemical Engineering, Vol. 34, Issue 10, pp. 1606-1617, Oct. 2010.##

[4] Mokarizadeh Haghighi Shirazi M. and Mowla D., “Energy optimization for liquefaction process of natural gas in peak shaving plant,” Energy, Vol. 35, Issue 7, pp. 2878-2885, July 2010.##

[5] Alabdulkarem A., Mortazavi A., Hwang Y., Radermacher R. and Rogers P., “Optimization of propane pre-cooled mixed refrigerant LNG plant,” Applied Thermal Engineering, Vol. 31, Issue 6-7, pp. 1091-1098, May 2011.##

[6] Hatcher P., Khalilpour R. and Abbas A., “Optimisation of LNG mixed-refrigerant processes considering operation and design objectives,” Computers and Chemical Engineering, Vol. 41, pp. 123-133, June 2012. ##

[7] Khan M. S., Lee S., Rangaiah G. P. and Lee M., “Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes,” Applied Energy, Vol. 111, pp. 1018-1031, 2013.##

[8] Wahl P. E., Lovseth S. W. and Molnvik M. J., “Optimization of a simple LNG process using sequential quadratic programming,” Computers and Chemical Engineering, Vol. 56, pp. 27-36, 2013.##

[9] Xu X., Liu J., Jiang C. and Cao L., “The correlation between mixed refrigerant composition and ambient conditions in the PRICO LNG process,” Applied Energy, Vol. 102, pp. 1127-1136, 2013. ##

[10] Xu X., Liu J. and Cao L., “Optimization and analysis of mixed refrigerant composition for the PRICO natural gas liquefaction process,” Cryogenics, Vol. 59, pp. 60-69, 2014. ##

[11] Morosuk T., Tesch S., Hiemann A., Tsatsaronis G. and Bin Omar N., “Evaluation of the PRICO liquefaction process using exergy-based methods,” Journal of Natural Gas Science and Engineering, Vol. 27, Part 1, pp. 23-31, 2015.##

[12] Na J., Lim Y. and Han C., “A modified DIRECT algorithm for hidden constraints in an LNG process optimization,” Energy, Vol. 126, pp. 488-500, 2017. ##

[13] Aslambakhsh A. H., Moosavian M. A., Amidpour M., Hosseini M. and Amirafshar S., “Global cost optimization of a mini-scale liquefied natural gas plant,” Energy, Vol. 148, pp. 1191-1200, 2018. ##

[14] عبداللهی دمنه ف.، "ارائه یک فرآیند جدید مایع‌سازی گاز طبیعی با استفاده از تحلیل هم‌زمان پینچ و اکسرژی"، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، ایران، 1394.##

[15] حسینی م.، "طراحی و بهینه‌سازی فرآیند یکپارچه تولیدNGL  و LNG"، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، ایران، 1393.##

[16] کمالی‌نژاد م.، "اصلاح ساختار چرخه‌های سرمایش عمیق چند طبقه‌ای و چندجزئی واحدهای LNG برای کاهش مصرف انرژی و سرمایه‌گذاری از طریق تحلیلهای مفهومی (پینچ و اکسرژی) با ابزار ریاضیات غیر خطی گسسته (MINLP)"، پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی خواجه نصیرالدین طوسی، ایران، 1393.##

[17] نوبیجاری م.، "ارائه یک فرآیند جدید برای تولید LNG با استفاده از سامانه‌های سرمایش جذبی با هدف کاهش انرژی موردنیاز"، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، ایران، 1395.##

[18] Vatani A., Mehrpooya M. and Tirandazi B., “A novel process configuration for co-production of NGL and LNG with low energy requirement,” Chemical Engineering and Processing: Process Intensification, Vol. 63, pp. 16-24, 2013. ##

[19] Qyumm M. A., Ali W., Long N. V. D., Khan M. S. and Lee M., “Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine,” Energy, Vol. 144, pp. 968-976, 2017.##

 [20] Palizdar A., Ramezani T., Nargessi Z., AmirAfsharar S., Abbasi M. and Vatani A., “Thermodynamic evaluation of three mini-scale nitrogen single expansion processes for liquefaction of natural gas using advanced exergy analysis,” Energy Conversion and Management, Vol. 150, pp. 637-650, 2017.##

[21]. مقصودی پ. و حنفی‌زاده پ.، "بهینه‌سازی چند هدفه رکوپراتور میکروتوربین گازی با استفاده از الگوریتم ژنتیک"، ماهنامه مکانیک مدرس 17، دوره 6، شماره 3، صفحات 111-120، 1395.##

[22]. زارع ح.، بعنونی س. و قنبرزاده ا.، "طراحی بهینه مبدل گرمایی صفحه‌ای پره‌دار با روش الگوریتم بهینه‌سازی زنبور عسل"، ماهنامه مکانیک مدرس، دوره 12، شماره 5، صفحات 22-29، 1391.##