مقایسه‌ آزمایشگاهی عملکرد پلیمر پلی‌آکریل‌آمید و ماده فعال‌سطحی زیستی رامنولیپید در ازدیاد برداشت نفت با استفاده از میکرومدل‌های شیشه‌ای همگن و ناهمگن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی شیمی، دانشگاه صنعتی جندی شاپور، دزفول، ایران

2 گروه مهندسی مکانیک، دانشگاه صنعتی جندی شاپور، دزفول، ایران

10.22078/pr.2021.4266.2929

چکیده

در سالیان اخیر مطالعات زیادی در مـورد استفاده از مـواد فعال‌سطحی در زمینه‌ افزایش برداشت از مخازن نفتی انجام شده است کـه عموماً شـامل مقایسه عملکرد ماده فعال‌سطحی زیستی بـا ماده فعال‌سطحی شیمیایی بـوده است. ولی تاکنون تحقیقات اندکی در مورد مقایسه عملکرد مواد فعال‌سطحی زیستی و پلیمرها و همچنین، تأثیر دما بر برداشت نفت صورت گرفته است. لـذا در این تحقیق، به بررسی آزمایشگاهی اثر دما بر عملکرد ماده فعال‌سطحی زیستی رامنولیپید بـا تزریـق در میکرومدل شیشه‌ای و مقایسه عملکرد آن با پلیمر پلی‌اکریل‌آمید آنیونی پرداخته شده است. برای این منظور نتایج حاصل از سیلاب‌زنی به‌کمک ماده فعال‌سطحی زیستی موردنظر با نتایج سیلاب‌زنی با آب شور و پلی‌آکریل‌آمید مقایسه شده است. آزمایشات در دو دمای 25 و C° 75 و در دو میکرو مدل همگن و ناهمگن انجام شد. نتایج نشان داد که در مدل همگن درصد ازدیاد برداشت در اثر سیلاب‌زنی با ماده فعال‌سطحی زیستی رامنولیپید در دو دمای مورد مطالعه به‌ترتیب 48 و 62% است که در مقایسه با آب به‌ترتیب 9 و 7/13% افزایش برداشت نفت داشته است. این درحالی است که در سیلاب‌زنی با پلیمر مقادیر به‌ترتیب 61 و 70% به‌دست آمد. در مدل ناهمگن نیز شرایط به همین صورت به‌دست آمد. بدین ترتیب که درصد ازدیاد برداشت در اثر سیلاب‌زنی با ماده فعال‌سطحی زیستی رامنولیپید در دو دمای مورد مطالعه به‌ترتیب 41 و 51% بود که در مقایسه با آب عملکرد بالاتر و در مقایسه با پلیمر عملکرد پایین‌تری داشت. به‌طور کلی، در دمای بالاتر میزان ازدیاد برداشت در هر دو مدل همگن و ناهمگن تحت سه سیلاب‌زنی انجام شده، بیشتر بود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Comparison Experimental Study on Polyacrylamide and Rhamnolipid Biosurfactant Performance in Enhancement Oil Recovery in Homogenous and Non-homogenous Glass Micromodels

نویسندگان [English]

  • Samira Amiri 1
  • Safoora Karimi 1
  • Mojtaba Shafiei 1
  • mohammadreza Assari 2
1 Chemical Engineering Department, Jundi-Shapur University of Technology, Dezful, Iran
2 Mechanical Engineering Department, Jundi-Shapur University of Technology, Dezful, Iran
چکیده [English]

In recent years, many studies have been done on the use of surfactant to enhancement oil recovery from reservoirs; in which the performance of biosurfactant with chemical surfactant was compared. But so far no study has been conducted focusing on comparing the performance of biosurfactant with polymers as well as the effect of temperature on oil recovery. Therefore, the present study was dedicated to study the effect of temperature on the rhamnolipid biosurfactant performance using glass micromodel and to compare its performance with anionic polyacrylamide polymer. Thus, the results of the biosurfactant flooding tests were compared with saltwater and polyacrylamide flooding tests. Experiments were conducted at two temperature, 25 and 75 Celsius degrees, in two homogenous and non-homogenous micromodels. Results indicated that in the homogenous model, for two mentioned temperatures, enhanced oil recovery due to flooding with rhamnolipid biosurfactant was 48 and 62, respectively, in which there was 9 and 12.7 percent improvement in compare to saltwater. Meanwhile, the results of polymer flooding showed 61 and 70 percent enhancement, respectively. The same results were obtained in non-homogenous model. The enhanced oil recovery due to rhamnolipid biosurfactant injection in two temperatures were 41 and 51 percent, respectively, which it is higher compared to saltwater and lower compared to polymer. In general, at higher temperature, oil recovery increased in both homogenous and non-homogenous models under three floods.
 

کلیدواژه‌ها [English]

  • EOR
  • Glass Micromodel
  • Flooding
  • Rhamnolipid
  • polymer
[1]. دهقان ع.ا.، ضرورت به‌کار‌گیری روش‌های ازدیاد برداشت در مخازن نفتی و راهبرد شرکت نفت فلات قاره ایران، ماهنامه اکتشاف و تولید، شماره 98، صفحات 21-28، 1391.##
[2]. Sen R (2008) Biotechnology in petroleum recovery: The microbial EOR, Progress in Energy and Combustion Science, 34: 714-724. ##
[3]. Ahmadi M A, Galedarzadeh M, Shadizadeh S R (2015) Wettability alteration in carbonate rocks by implementing new derived natural surfactant: enhanced oil recovery applications, Transport in Porous Media, 106, 3:  645-667. ##
[4]. Ahmadi M A, Arabsahebi Y, Shadizadeh S R, Behbahani S S (2014) Preliminary evaluation of mulberry leaf-derived surfactant on interfacial tension in an oil-aqueous system: EOR application, Fuel, 117: 749-755. ##
[5]. خادم الحسینی ر.، جعفری آ.، موسوی م.، منطقیان م. (1398) مقایسه عملکرد ماده فعال‌سطحی زیستی تولید شده (رامنولیپید) و مواد فعال‌سطحی متداول (CTAB، DTAB، SDS و SDBS) در ازدیاد برداشت نفت. پژوهش‌های کاربردی مهندسی شیمی- پلیمر, 1، 69-80. ##
[6]. Chakraborty S, Ghosh M, Chakraborti S, Jana S, Sen K K, Kokare C, Zhang L (2015) Biosurfactant produced from Actinomycetes nocardiopsis A17: characterization and its biological evaluation, International Journal of Biological Macromolecules, 79: 405-412. ##
[7]. Geetha S, Banat I M, Joshi S J (2018) Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR), Biocatalysis and Agricultural Biotechnology, 14: 23-32. ##
[8]. Zhou X, Dong M, Maini B (2013) The dominant mechanism of enhanced heavy oil recovery by chemical flooding in a two-dimensional physical model, Fuel, 108: 261-268. ##
[9]. Kumar S, Mandal A (2016) Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery, Applied Surface Science, 371: 42-51. ##
[10]. امانی ح. (1393) "مطالعه مشاهده‌ای ازدیاد برداشت میکروبی نفت با استفاده از میکرومدل، پژوهش نفت" شماره 80، صفحات 162-169. ##
[11]. محمودی م. (1398) "بررسی پاک‌سازی خاک‌آلوده به نفت خام به‌روش زیستی با استفاده از بیوسورفکتانت رامنولیپید" پژوهش نفت، 29، 136-147. ##
[12]. AlDousary S (2012) Determining pore level mechanisms of alkaline surfactant polymer flooding using a micromodel, in SPE Annual Technical Conference and Exhibition SPE, San Antonia, Texas, USA. ##
[13]. Chen Z, Zhao X,Wang Z (2015) A comparative study of inorganic alkaline/polymer flooding and organic alkaline/polymer flooding for enhanced heavy oil recovery, 469: 150-157. ##
[14]. Yousefvand H, Jafari A (2015) Enhanced oil recovery using polymer/nanosilica, 11: 565-570. ##
[15]. شعبان م، رمضانی ا ، سعادت آبادی م، احدیان م. (1396) "مروری بر پلیمرهای محلول در آب به‌عنوان عوامل کنترل تحرک در ازدیاد برداشت نفت .فصل‌نامه علمی- ترویجی بسپارش 3، 38-49. ##
[16]. Yousefvand H A, Jafari A J J o P S (2018) Engineering, Stability and flooding analysis of nanosilica/NaCl/HPAM/SDS solution for enhanced heavy oil recovery, Journal of Petroleum Science and Engineering, 162: 283-291. ##
[17]. Delamaide E (2018) Polymers and their limits in temperature, salinity and hardness: theory and practice, in SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane, Australia. ##
[18]. امانی ح. (1393) بررسی ازدیاد برداشت نفت به‌روش سیلاب‌زنی سورفکتین درون میکرومدل و مغزه. پژوهش نفت، شماره 81، صفحات 55-65. ##
[19]. Udoh T, Akanji L, Vinogradov J (2018) Experimental investigation of potential of combined controlled salinity and bio-surfactant csbs in enhanced oil recovery EOR processes, in SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria. ##
[20]. Câmara J M D A, Sousa M A S B, Neto E B, Oliveira M C A (2019) Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa in microbial-enhanced oil recovery (MEOR), Journal of Petroleum Exploration and Production Technology, 9, 3: 2333-2341. ##
[21]. Zholi L, Subhash A, Rubia M,Abdulkareem A, Zhenghe X, Ali Y (2020) Microscale effects of polymer on wettability alteration in carbonates, Society of Petroieum Engineers, 25: 1884-1894. ##
[22]. Abbasi H, Hamedi M M, Lotfabad T B, Zahiri H S, Sharafi H, Masoomi F, Noghabi K A (2012) Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant, Journal of Bioscience And Bioengineering, 113, 2: 211-219. ##