شبیه‌سازی جریان عبوری از اریفیس در خطوط ورودی و خروجی ستون نفوذ حرارتی با استفاده از دینامیک سیالات محاسباتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، تهران، ایران

2 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران

3 گروه مهندسی شیمی، دانشکده فنی، دانشگاه تهران، ایران

4 گروه مهندسی پلیمر، دانشکده فنی مهندسی، دانشگاه لرستان، خرم آباد، ایران

10.22078/pr.2022.4560.3058

چکیده

اریفیس‌ها تجهیزاتی ساده بدون قطعات متحرک و الکترونیکی هستند که در صنایع غنی سازی می‌توان از آنها استفاده کرد که می‌توان اختلاف فشار بیشتری نسبت به شیرهای کنترل بر روی آن اعمال نمود و بسیار ارزان قیمت می‌باشند. هدف این تحقیق بررسی عبور جریان انواع گازهای مختلف از میان اریفیس‌ها و تعیین شرایط عملیاتی مناسب برای کاربرد کنترلی داخل خطوط ورودی و خروجی ستون نفوذ حرارتی می‌باشد. جهت پیش بینی رفتار گاز داخل اوریفیس از دینامیک سیالات محاسباتی و با استفاده از نرم‌افزار COMSOL استفاده شد. مدل سه بعدی اوریفیس به همراه جریان گاز تراکم‌پذیر جهت شبیه‌سازی مورد نظر به‌کار گرفته شد. جهت اعتبارسنجی مدل از معادلات موجود در این زمینه، سینقال و همکاران و هانلن و همکاران که بسیار پرکاربرد و معتبر بودند استفاده شد. نتایج در دو بخش جریان صوتی و جریان مادن صوت ارائه گردید. در جریان صوتی نشان داده شده است که در گلویی دما و سرعت به شدت بالا و فشار افت پیدا می‌کند. در جریان مادون صوت نیز نشان داده شد که در گلویی سرعت بالا می رود و متناسب با آن فشار افت می‌کند. نتایج دوبخش صوتی و مادون نشان دادند که مدل سه بعدی در نظر گرفته شده دارای دقت بالایی بوده و به خوبی رفتار واقعی اریفیس را پیش‌بینی می‌کند.
 

کلیدواژه‌ها


عنوان مقاله [English]

CFD Simulation of Flow Through the Orifice at the Inlet and Outlet Lines of the Thermal Diffusion Column

نویسندگان [English]

  • Younes Amini 1
  • javad Karimi-Sabet 2
  • Mohammad Mahdi Shademan 2
  • Abolfazl Dastbaz 3
  • Amin Hassanvand 4
1 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
3 College of Chemical Engineering, University of Tehran, Iran
4 Department of Polymer Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran
چکیده [English]

Orifices are simple devices without moving and electronic components that can be used in the enrichment industry and can be applied with a higher-pressure difference than control valves and it is very low-priced. The main goal of this research is the examination of different gas flow through an orifice and the determination of optimum conditions for the control application inside the inlet and outlet lines of the thermal diffusion column. Computational fluid dynamics was utilized to predict the behavior of gas flow through an orifice using COMSOL software. The three-dimensional orifice model with the compressible gas flow was applied in our model. To validate the model, the reliable and common correlations in this field, e.g., Singhal et al. and O’Hanlon were used. The results were presented in two sections: supersonic and subsonic flow. The result shows that in the supersonic flow, the temperature and velocity in the throat decrease sharply and the pressure drops. Also, in the subsonic flow at the throat, velocity increases, and accordingly pressure decreases. The results of the simulation of the supersonic and subsonic flow showed that the three-dimensional model can accurately predict the behavior of orifices.
 

کلیدواژه‌ها [English]

  • Orifice
  • CFD
  • Ultrasonic Flow
  • COMSOL
[1]. Jahromi P F, Karimi-Sabet J, Amini Y (2018) Ion-pair extraction-reaction of calcium using Y-shaped microfluidic junctions: An optimized separation approach, Chemical Engineering Journal, 334: 2603-2615. ##
[2]. Moradi R, Monfared S M, Amini Y, Dastbaz A (2016) Vacuum enhanced membrane distillation for trace contaminant removal of heavy metals from water by electrospun PVDF/TiO2 hybrid membranes, Korean Journal of Chemical Engineering, 33, 7: 2160-2168. ##
[3]. Moradi R, Karimi-Sabet J, Shariaty-Niassar M, Amini Y (2016) Air gap membrane distillation for enrichment of H2 18O isotopomers in natural water using poly(vinylidene fluoride) nanofibrous membrane, Chemical Engineering and Processing: Process Intensification, 100: 26-36. ##
[4]. Yashvanth S, Seshadri V, KJ Y K (2017) CFD Analysis of Flow through Single and Multi Stage Eccentric Orifice Plate Assemblies. ##
[5]. Fadaei M, Ameli F, Hashemabadi S H (2019) Experimental study and CFD simulation of two-phase flow measurement using orifice flow meter, Journal of Petroleum Research, 29, 98-5: 85-96. ##
[6]. Dabiri Atashbeyk M, Shahbazi K, Fattahi M (2018) Pressure profile estimation through CFD in UBD operation considering with influx to wellbore, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37, 6: 271-283. ##
[7]. Tukiman M M, Ghazali M N M, Sadikin A, Nasir N F, Nordin N, Sapit A, Razali M A (2017) CFD simulation of flow through an orifice plate, in Materials Science and Engineering, 243, 1: 012036, IOP Publishing. ##
[8]. Amini Y, Nasr Esfahany M (2019) CFD simulation of the structured packings: a review, Separation Science and Technology, 54, 15: 2536-2554. ##
[9]. Murphy S, Delfos R, Pourquie M J B M, Olujić Ž, Jansens P J, Nieuwstadt F T M (2007) Prediction of strongly swirling flow within an axial hydrocyclone using two commercial CFD codes, Chemical Engineering Science, 62, 6: 1619-1635. ##
[10]. Amini Y, Karimi-Sabet J, Nasr Esfahany M, Haghshenasfard M, Dastbaz A (2019) Experimental and numerical study of mass transfer efficiency in new wire gauze with high capacity structured packing, Separation Science and Technology, 54, 16: 2706-2717. ##
[11]. Singh R, Singh S, Seshadri V (2010) Performance evaluation of orifice plate assemblies under non-standard conditions using CFD, 17: 397-406. ##
[12]. Martin K, Reiberer R, Hager J (2006) Modeling of short tube orifices for CO2. ##
[13]. Stack J (2011) Design analysis of orifices for use in reactor coolant pump test loops, Rensselaer Polytechnic Institute. ##
[14]. Singhal A, Parveen M (2013) Air flow optimization via a venturi type air restrictor, London UK, WCE. ##
[15]. Peter U C, Chinedu U J C I (2016) Model prediction for constant area, variable pressure drop in orifice plate characteristics in flow system, Chemistry International, 2, 2: 80-88. ##
[16]. Gan G, Riffat S B J E T, Science F (1997) Pressure loss characteristics of orifice and perforated plates, 14, 2: 160-165. ##
[17]. Oliveira J L G,  Passos J C, Verschaeren R, Van Der Geld C (2009) Mass flow rate measurements in gas–liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor, Experimental Thermal and Fluid Science, 33, 2: 253-260. ##
[18]. دوازده امامی م، میربها ع، الماسیان ل (1384) شبیه‌سازی عددی جریان سیال در اریفیس‌های ورودی یک مشعل گازسوز به‌منظور بررسی اثرات تغییر فشار محفظه احتراق بر توزیع دبی سوخت در سر مشعل، سیزدهمین کنفرانس سالانه مهندسی مکانیک، اصفهان، ایران. ##
[19]. Shah S, M, Joshi J B, Kalsi A S, Prasad C S R, Shukla D S (2012) Analysis of flow through an orifice meter: CFD simulation, Chemical Engineering Science, 71: 300-309. ##
[20]. O'Hanlon J F (2005) A user's guide to vacuum technology, John Wiley and Sons. ##
[21]. Saad M A (1985) Compressible fluid flow. Englewood Cliffs. ##
[22]. Schreier S (1982) Compressible flow. ##
[23]. Madenci E, Guven I (2015) The finite element method and applications in engineering using ANSYS®, Springer. ##
[24]. Bathe K J (2007) Finite element method, Wiley Encyclopedia of Computer Science and Engineering, 1-12. ##
[25]. Amini Y, Karimi‐Sabet J, Esfahany M N (2016) Experimental and numerical simulation of dry pressure drop in high‐capacity structured packings, Chemical Engineering and Technology, 39, 6: 1161-1170. ##
[26]. Deshpande K B, Zimmerman W B (2006) Simulation of interfacial mass transfer by droplet dynamics using the level set method, Chemical Engineering Science, 61, 19: 6486-6498. ##
[27]. Bird R B (2002) Transport phenomena, Appl. Mech. Rev., 55, 1: R1-R4. ##
[28]. Salimi H, Hashemipour N, Karimi-Sabet J, Amini Y (2021) Appling the computational fluid dynamics studies of the thermogravitational column for N2-CO2 and He-Ar gas mixtures separation, Chemical Product and Process Modeling, 27, 8: 1745-1755. ##
[29]. Hashemipour N, Karimi-Sabet J, Motahari K, Monfared S M, Amini Y, Moosavian M A (2019) Numerical study of n-heptane/benzene separation by thermal diffusion column, Chinese Journal of Chemical Engineering, 27, 8: 1745-1755. ##
[30]. Hashemipour N, Karimi-Sabet J, Motahari K, Monfared S M, Amini Y, Moosavian M A (2018) Experimental and simulation investigation on separation of binary hydrocarbon mixture by thermogravitational column, Journal of Molecular Liquids, 268: 791-806. ##
[31]. Amini Y, Mokhtari M, Haghshenasfard M, Gerdroodbary M B (2015) Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique, Case Studies in Thermal Engineering, 6: 104-115. ##
[32]. Amini Y, Karimi-Sabet J, Nasr Esfahany M (2016) Experimental and numerical study of multiphase flow in new wire gauze with high capacity structured packing, Chemical Engineering and Processing: Process Intensification, 108: 35-43. ##
[33]. Karbasi E,  Karimi-Sabet J, Mohammadi-Rovshandeh J, Moosavian M A, Ahadi H, Amin Y (2017) Experimental and numerical study of air-gap membrane distillation (AGMD): novel AGMD module for Oxygen-18 stable isotope enrichment, Chemical Engineering Journal, 322: 667-678. ##
[34]. Abdollahi P, Karimi-Sabet J, Moosavian M A, Amini Y (2020) Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables, Separation and Purification Technology, 231: 115875. ##
[35]. Marsousi S, Karimi-Sabet J, Moosavian M A, Amini Y (2019) Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics, Chemical Engineering Journal, 356: 492-505. ##
[36]. Jahromi P F, Karimi-Sabet J, Amini Y, Fadaei H (2017) Pressure-driven liquid-liquid separation in Y-shaped microfluidic junctions, Chemical Engineering Journal, 328: 1075-1086. ##
[37]. Sadeghi A, Amini Y, Saidi M H, Yavari H (2015) Shear-rate-dependent rheology effects on mass transport and surface reactions in biomicrofluidic devices, AIChE Journal, 61, 6: 1912-1924. ##
[38]. Sadeghi A, Amini Y, Saidi M H, Chakraborty S (2014) Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices, Analytica Chimica Acta, 838: 64-75. ##
[39]. Esmaeili Faraj S H, Nasr Esfahany M Amini Y (2014) Modeling of biofiltration process for removal of vinyl chloride from an air stream by modified ottengraf model, Journal of Petroleum Research, 24, 79: 21-30. ##
[40]. Amini Y, Shadman M M, Karimi-Sabet J (2021) CFD simulation of flow distribution in the randomly packed bed Dixon ring, Separation Science and Technology, 1-10. ##
[41]. Moradi R, Mosavat M, Gerdroodbary M B, Abdollahi A, Amini Y (2018) The influence of coolant jet direction on heat reduction on the nose cone with Aerodome at supersonic flow, Acta astronautica, 151: 487-493. ##
[42]. Moradi R, Mahyari A, Gerdroodbary M B, Abdollahi A, Amini Y (2018) Shape effect of cavity flameholder on mixing zone of hydrogen jet at supersonic flow, International Journal of Hydrogen Energy, 43, 33: 16364-16372. ##
[43]. Gerdroodbary M B, Amini Y, Ganji D D, Takam M R (2017) The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow, Advances in Space Research, 59, 5: 1330-1340. ##
[44]. Anazadehsayed A, Gerdroodbary M B, Amini Y, Moradi R (2017) Mixing augmentation of transverse hydrogen jet by injection of micro air jets in supersonic crossflow, Acta Astronautica, 137: 403-414. ##
[45]. Barzegar Gerdroodbary M, Ganji D D, Amini Y (2015) Numerical study of shock wave interaction on transverse jets through multiport injector arrays in supersonic crossflow, Acta Astronautica, 115: 422-433. ##