طراحی سیستم کنترل پیشبین غیرخطی مبتنی بر مدل برای فرازآوری با استفاده از پمپ الکتریکی درون‌چاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی نفت، معدن و مواد، دانشکده عمران ومنابع زمین،دانشگاه آزاد اسلامی واحد تهران مرکزی، ایران

10.22078/pr.2022.4734.3124

چکیده

فرازآوری مصنوعی با پمپ الکتریکی درون‌چاهی یکی از روش‌های متداول چاه محور برای افزایش یا نگهداشت تولید از چاه است. به‌منظور افزایش بازدهی، رعایت محدودیت‌های عملیاتی و ایمنی و کاهش زمان و هزینه تعمیرات به سیستم کنترل مناسب نیاز است. کنترل فرآیند فرازآوری با توجه به تعداد پارامترهای عملیاتی و محدودیت‌های ایمنی مجموعه تولید شامل مخزن، چاه و پمپ، کاری چالش برانگیز است. روش‌های مختلفی برای کنترل فرازآوری با پمپ الکتریکی درون‌چاهی پیشنهاد شده است. کنترل مبتنی بر این روش‌ها یا به‌علت استفاده از تقریب خطی برای مدل‌سازی فرآیند فرازآوری از دقت کافی برخوردار نیستند یا به‌دلیل استفاده از روابط دینامیک و حل آن‌ها برای شبیه‌سازی فرآیند و بار سنگین محاسباتی قابلیت پیاده‌سازی برروی سخت‌افزار‌های مرسوم را ندارند. در این تحقیق یک سیستم کنترل پیشبین غیر خطی متناسب با اهداف کنترلی فرآیند فرازآوری با پمپ الکتریکی درون‌چاهی و با در نظر گرفتن محدودیت‌های عملیاتی و ایمنی توسعه داده شده است. علاوه‌براین به‌منظور کاهش بار محاسباتی و با در نظر گرفتن طبیعت غیر خطی فرآیند، از یک مدل غیر خطی با ساختار مبتنی بر شبکه‌های عصبی به‌عنوان مدل پیشبین در ساختار کنترل‌کننده استفاده شده است. به‌منظور بررسی کارایی کنترل‌کننده و مدل توسعه داده شده، عملکرد کنترل‌کننده برروی چاه شماره 88 میدان اهواز– آسماری منتخب نصب پمپ الکتریکی درون‌چاهی ارزیابی شده است. کنترل‌کننده توسعه داده شده به‌خوبی رفتار مرجع را پیروی کرده و از طرف دیگر به‌خوبی اغتشاشات ورودی به سیستم را جبران‌سازی می‌کند. همچنین طراحی کنترل‌کننده به گونه‌ای است که محدودیت‌های عملیاتی و ایمنی در ساختار کنترل‌کننده وارد شده و رفتار سیستم به گونه‌ای تنظیم می‌شود که این محدودیت‌ها نقض نشوند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Nonlinear Model Predictive Controller for Electrical Submersible Pump Lifted Wells

نویسندگان [English]

  • Farid Aldin Mirzaie Harsini
  • Mahdi NazariSaram
Faculty of Civil and Earth Resources Engineering, Islamic Azad University, Centre Tehran Branch, Iran
چکیده [English]

Artificial lifting utilizing electrical submersible pump is widely used to increase oil production from wells. A suitable control system is required in order to increase efficiency of ESP system and to avoid damage to pump and to increase safety of ESP production. Automatic control of ESP unit is not a trivial task due to the high number of parameters and variable involved. Many methods have been proposed for control of ESP lifted wells. Most methods rely on a linear model of ESP lifted well and controller designed based on this linear approximation. Linear model and controllers can fail if the process undergoes large changes in operating conditions or huge disturbances are introduced to process. Other methods solve dynamic equations governing the ESP lifted well operation. Although these methods are highly accurate; however, they are computationally expensive, and they cannot be implemented on conventional control systems. In this paper, a nonlinear dynamic model is developed for ESP lifted well. The model is then utilized inside a Nonlinear Model Predictive Control (NMPC) System. The developed model and controller performance is then tested and assessed under various scenarios. The developed controller performance shows proper reference tracking and disturbance rejection properties while the process constraint are completely satisfied.
 

کلیدواژه‌ها [English]

  • Artificial Lifting
  • Electrical submersible pump
  • Nonlinear Model Predictive Controller
  • Wavelet Network
  • Nonlinear Control
[1]. Takacs G, (2017) Electrical submersible pumps manual: design, operations, and maintenance, Gulf Professional Publishing. ##
[2]. Wilson B L, Liu J C (1985) Electrical submersible pump performance using variable speed drives, in SPE Production Operations Symposium, Society of Petroleum Engineers: Oklahoma City, Oklahoma, 7. ##
[3]. Divine D L (1979) A Variable Speed Submersible Pumping System, in SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers: Las Vegas, Nevada, 12. ##
[3]. Patterson M M, (2013) On the efficiency of electrical submersible pumps equipped with variable frequency drives: a field study, SPE Production and Facilities, 11: 61-64. ##
[5]. Al-Jasmi A, Nasr H, Goel H, Moricca G, Carvajal G, Dhar J, Querales M, Villamizar M, Cullick A, Rodriguez J (2013) ESP Smart Flow integrates quality and control data for diagnostics and optimization in real time (Part of KwIDF Project). In SPE Middle East Intelligent Energy Conference and Exhibition, OnePetro, SPE Digital Energy Conference. ##
[6]. Pavlov A, Krishnamoorthy D, Fjalestad K, Aske E, Fredriksen M (2014) Modelling and model predictive control of oil wells with Electric Submersible Pumps, IEEE Conference on Control Applications (CCA): 586-592. ##
[7]. Sharma R, Glemmestad B (2013) Optimal control strategies with nonlinear optimization for an Electric Submersible Pump lifted oil field, Modeling, Identification and Control: A Norwegian Research Bulletin, 34: 55-67. ##
[8]. Binder B, Kufoalor D, Pavlov A, and Johansen T, (2014), Embedded model predictive control for an electric submersible pump on a programmable logic controller, IEEE Conference on Control Applications, CCA, 5, 2: 579-585. ##
[9]. Krishnamoorthy D, Bergheim E M, Pavlov A, Fredriksen M, and Fjalestad K, (2016) Modelling and robustness analysis of model predictive control for electrical submersible pump lifted heavy oil wells, IFAC-PapersOnLine, 49, 7: 544-549. ##
[10]. Delou P, Azevedo J, Krishnamoorthy D, de Souza Jr M, and Secchi A (2019) Model predictive control with adaptive strategy applied to an electric submersible pump in a subsea environment, IFAC-Papers on Line, 52, 3: 784-789. ##
[11]. Ohrem S J, Holden C (2017) Modeling and nonlinear model predictive control of a subsea pump station, IFAC, 50, 2: 121-126. ##
[12]. Allgöwer F, Findeisen R, Nagy Z K (2004) Nonlinear model predictive control: From theory to application, Institur of Chemical Engineers, 35, 3: 299-315. ##
[13]. Grüne L, Pannek J (2011) Nonlinear Model Predictive Control, Nonlinear Model Predictive Control: Theory and Algorithms, 235. ##
[14]. Schoukens J and Ljung L, (2019), Nonlinear system identification: A user-oriented road map, IEEE Control Systems Magazine, 39, 6: 28-99. ##
[15]. Nelles O (2002) Nonlinear system identification, from classical approaches to neural networks, fuzzy models, and gaussian processes, Second edition, Oliver Nelles, Springer, 1-711. ##
[16]. Binder B, Pavlov A, Johansen T (2015) Estimation of flow rate and viscosity in a well with an electric submersible pump using moving horizon estimation, IFAC, 48: 140-146. ##
[17]. Kaasa G O, Stamnes Ø N, Aamo O M, Imsland L S (2012) Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system, SPE Drilling and Completion, 27, 01: 127-138. ##
[18]. Pavlov A, Alstad V (2010) Modelling, simulation and automatic control of ESP lifted wells, Statoil ASA, Norway, Technical Report, 4, 5: 35-48. ##
[19]. Sardjono P, Saputra M N W (2016) Optimal bottomhole pressure control on oil well production using PID-linear hybrid control on electric submersible pump, 8th International Conference on Information Technology and Electrical Engineering (ICITEE), 1-6. ##
[20]. Guo B (2011) Petroleum production engineering, a computer-assisted approach, 1st edition, Elsevier, 1-458. ##
[21]. White F M (2011) Fluid Mechanics, 7th edition, Mc Graw Hill, 1-176. ##
[22]. Turzo Z, Takacs G, Zsuga J (2000) Equations correct centrifugal pump curves for viscosity, Oil and Gas Journal, 98, 22: 57-57. ##
[23]. Drive A (2007) Flow Equations for Sizing Control Valves, Standards and Recommended Practices for Instrumentation and Control, ANSI/ISA, 1-69. ##
[24]. Zhang J, Walter G G, Miao Y, Lee W N W (1995) Wavelet neural networks for function learning, IEEE transactions on Signal Processing, 43, 6: 1485-1497. ##
[25]. Bakshi B R, Stephanopoulos G (1993) Wave‐net: a multiresolution, hierarchical neural network with localized learning, AIChE Journal, 39, 1: 57-81. ##