تجزیه و تحلیل رخساره‌ای، محیط رسوبی و فرآیندهای دیاژنتیکی سازند ایلام میدان گچساران، حوضه زاگرس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد تهران شمال، ایران

2 گروه زمین‌شناسی و حوضه‌های رسوبی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، ایران

10.22078/pr.2022.4456.3016

چکیده

بررسی ویژگی‌های رسوبی سازندهای کربناته به‌عنوان یکی از مخازن عمده ذخیره‌سازی هیدروکربن، اهمیت بالایی دارد. به‌منظور تجزیه و تحلیل رخساره‌ای، محیط رسوبی، و تغییرات دیاژنزی سازند ایلام (گروه بنگستان) در میدان گچساران از داده‌های مقاطع نازک، و نمودارهای چاه‌پیمایی (لاگ) استفاده شده است. مطالعات پتروگرافی نشان داد این سازند منحصراٌ در بخش غربی گسترش داشته، و با یک منطقه زیستی حاوی رخساره نریتیک ناحیه کم عمق دریا، مشخص می‌گردد. رخساره‌های رسوبی این سازند عمدتاً آهکی که گاهی (بسته به عمق حوضه رسوبی) به آهک شیلی تغییر می‌نماید. در چاه‌های بخش شرقی میدان گچساران، نبود عظیمی از رسوبات کنیاسین و تورونین مشاهده شد که علت آن تاثیر فاز فرسایشی بعد از سنومانین– تورونین و ایجاد ارتفاعات قدیمی به موازات گسل خارک-میش است. رخساره‌های تعیین شده برروی یک پلاتفرم کربناته (شلف)، در سه محیط لاگون، پشته (شول) و لاگون دریای باز نهشته شده‌اند. رخساره‌های سازند ایلام محیط‌های مختلف دیاژنزی دریایی، متئوریک، دفنی و نیز بالا آمدگی را تجربه نموده‌اند. این رسوبات در معرض فرآیندهای میکریتی شدن، فشردگی، سیمانی شدن، نئومورفیسم، انحلال، شکستگی و جانشینی (دولومیتی شدن، هماتیتی شدن و پیریتی شدن) قرار گرفته‌اند. مهم‌ترین انواع تخلخل شامل حفره‌ای مرتبط، شکستگی و کانالی هستند، که نقش زیادی در تغییرات کیفیت مخزن داشته‌اند. بررسی مقادیر پارامترهای پتروفیزیکی نشان داد که میانگین تخلخل، اشباع آب و نسبت ضخامت مفید به کل متغییر بوده ولی به‌طور کلی به‌ترتیب 3/2%، 88% و 016/0 است. با توجه به پایین بودن میزان تخلخل، نقش شکستگی، و سایر فرآیندهای دیاژنزی در کیفیت مخزن قابل توجه است. فعالیت بلندی قدیمی در بخش شرقی نه تنها در توزیع رخساره‌ای محسوس است بلکه نقش عمده‌ای در تحولات بعدی سازند ایلام دارد. بنابراین کیفیت مخزنی سازند ایلام تابع عوامل متعدد رسوبی، دیاژنژی، و فعالیت تکتونیکی بوده، و لذا در بخش‌های مختلف متغییر خواهد بود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Microfacies, Sedimentary Environment and Diagenetic Processes Analysis of Ilam Formation in Gachsaran Oil Field, Zagross Basin Gachsaran Oil Field, Zagross Basin

نویسندگان [English]

  • Mahdi Ahmadi Nabi 1
  • Davood Jahani 1
  • Bahman Soleimani 2
1 Geology Department, Basic Sciences Faculty, North Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Petroleum Geology and sedimentary Basin, Earth Sciences Faculty, Shahid Chamran University of Ahvaz, Iran
چکیده [English]

The study of sedimentary characteristics of carbonate formations as one of the main hydrocarbon reservoirs is important. In this research paper, we used thin section, and petrophysical logs data to analysis of facies, sedimentary environment and diagenetic variation of the Ilam Formation (Bangestan group). Thin sections petrography revealed that the Ilam Formation which was deposited as a full series in western part of the Gachsaran oil field and characterized by a neritic facies indicating a shallow marine. The sedimentary facies of Ilam Formation are mainly limestone, and sometimes shaley limestone (in restricted part of the basin). The lack of Coniancian-Turonian sediments in wells drilled in eastern part of the field can be related to erosional phase after Cenomanian-Turonian and developement of paleoheight parallel to Khark-Mish fault. The determined facies are deposited over a carbonate platform (shelf type) in three sedimentary environments: shoal, lagoon and semi restricted lagoon. The petrographic characteristics of detected facies of Ilam Formation revealed that they were experienced different diagenetic realms such as marine, meteoric, and burial and during uplift periods. These sediments then influenced by diagenetic processes such as micritization, compaction, cementation, neomorphism, solution, fracturing and replacement (dolomitization, hematitization, and pyritization). The dominant porosity types are interconnected vugs, fracture and channel which are played a profound effects on the variation of reservoir quality. The measurements of petrophysical parameters present that the averages of porosity, water saturation and net to gross ratio are varied in the Ilam reservoir, but these parameters are generally 2.3%, 88% and 0.016, respectively. In view of low values of porosity, the role of fractures and diagenetic processes are important in the reservoir quality. The paleohigh presence in eastern section is not only affected on facies distribution, but it also has an important role in subsequent evolution. Therefore, the quality of the Ilam reservoir is a function of sedimentation, diagenesis, and tectonic activity; and therefore, it will be variable in different parts.
 

کلیدواژه‌ها [English]

  • Gachsaran field
  • Ilam Formation
  • Well Log
  • Sedimentary Facies
  • Reservoir Quality
[1]. Flügel E (2010) Microfacies of carbonate rocks, analysis interpretation and application: Berlin- Heidelberg, New York, Springer, 976. ##
[2]. Lucia F J (2007) Carbonate reservoir characterization, Spring, 2nd ed, New York, 226. ##
[3]. Weidlich O (2010) Meteoric diagenesis in carbonate below karst unconformities: hetrogenity and control factors: IN geological socity, London, species Publication, 329: 291-315. ##
[4]. Ahr W M (2008) Geology of carbonat reservoir, 1st Edition, Johon Wiley and Sons, 1-296. ##
[5]. Ehrenberge S N, Pickard N A H, Laursen G V, Mossadegh Z K, Svana T A, Aqrawi A A M, Mcarthur J M, Thirlwall M F (2007) Strontium isotope stratigraphy of the Asmari formation (Oligocens- Lower Miocens), SW Iram: Journal of Petroleum Geology, 30, 2: 107-128. ##
[6]. James G A, Wynd J G (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area: American Association Petroleum Geolology Bulletin, 40: 2182-224. ##
[7]. Wood G V, Lacassagne R M (1965) The limestone of the Bangestan group of the Iranian oil consortium, agreement area, Iranian operating oil companies, Tehran, Report 1084. ##
[8]. Wynd J G (1965) Biofacies of the Iranian oil consortium agreement area, GeoScience World, AAPG Bulleitn, 12, 49: 89. ##
[9]. Bourgeois F (1969) Kuh-e Bangestan: a model for cretaceous structures in Iran, Iranian Oil Operating Companies Report 89. ##
[10]. Hart B B (1970) Upper Cretaceous, structural history and prospect of the Khuzestan province: Iranian Oil Operating Companies report 1162, Unpublished. ##
[11]. Khalili M (1976) The biostratigraphic synthesis of Bangestan Group in southwest Iran: Iranian Oil Operating Companies, Geological and Exploration Division, Report 1219: 79. ##
[12]. Razin P, Taati F, Vanbuchem F S P (2010) Sequence stratigraphy of Cenomanian–Turonian carbonate platform margins (Sarvak Formation) in the High Zagros, SW Iran: an outcrop reference model for the Arabian Plate, Geological Society London, Special Publications, 329: 187–218. ##
[13]. غبیشاوی ع، رحمانی ع (1385) سکانس استراتیگرافی سازندهای ایلام و سروک در میدان نفتی آب تیمور چاه شمارة 14، گزارش شمارة پ- 5918، شرکت ملی مناطق نفت خیز جنوب، 37. ##
[14]. Khodaei N, Rezaee P, Honarmand J, Abdollahi-Fard I (2021) Microfacies analysis, sedimentary environment and sequence stratigraphy of the Ilam Formation (Coniacian? - Santonian) in the northwestern part of the Abadan Plain, Journal of Stratigraphy and Sedimentology Researches, 36, 4, 81: 109-134. ##
[15]. Vaziri Moghaddam H (2002) Biostratigraphic study of the Ilam and Gurpi formations based on planktonic foraminifera in SE of Shiraz, Iran: Journal of Siences, Islamic Republic of Iran, 13, 4: 339- 356. ##
[16]. تدینی م (1393) مدل‌سازی انواع شکستگی‌ها در سازند ایلام با استفاده از نگارهای تصویری و داده‌های آزمایش چاه در یکی از مخازن هیدروکربنی جنوب ایران، ماهنامه علمی اکتشاف و تولید نفت و گاز، 110: 70-63. ##
[17]. سرمدی ر، موسوی حرمی س ر، محبوبی ا (1395) بررسی میکروفاسیس‌ها و محیط رسوبی سازندهای مخزنی ایلام و سروک در میدان نفتی سعادت‌آباد، پژوهش نفت، دوره 26، 5-95، 173-161. ##
[18]. Shahin Y (2019) Geology of West Karun oil fields shared between Iran and Iraq, AAPG Annual Convention and Exhibition, San Antonio, Texas. ##
[19]. Khosrotehrani Kh, Baghbani D, Keshani F, Omrani M (2011) New founds in biostratigraphy of Ilam Formation at Kuhe Assaluyeh, (Zagros Province) Journal of Geoscience, 20, 78: 53-60. ##
[20]. سپیانی ح، محبوبی ا، موسوی حرمی ر، محمودی قرایی م ح، غفرانی ا (1389) فرآیندهای دیاژنز و تأثیر آن بر کیفیت مخزنی سازند ایلام، میدان نفتی ماله کوه، شمال باختری اندیمشک، مجله پژوهش نفت، 20، 83-65. ##
[21]. اسدی مهماندوستی ا (1384) ژئوشیمی و دیاژنز سازند ایلام در میادین نفتی آب تیمور و منصوری و رخنمون تنگ رشیدکوه پیون، منطقه ایذه، پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی، 311. ##
[22]. اسدی مهماندوستی ا، دانشیان ج، محمدپناه م ف (1398) بررسی ویژگیهای رسوبی- دیاژنزی و ژئوشیمیایی سازند ایلام در شمالغرب آبدانان، کبیرکوه. پژوهش‌های چینه نگاری و رسوب‌شناسی، 35، 4:  104-77. ##
[23]. Asadi Mehmandosti E, Bdolmaleki S, Ghalavand H (2017) Microfacies, sedimentary environment and diagenesis of the Ilam Formation in an Oilfield of the Abadan plain, Applied Sedimentology, 5, 9: 21-39. ##
 
[24]. چهارده چریک غ (1385) زیست چینه‌نگاری سازند ایلام ) مقطع تیپ ( براساس فرامینیفرهای پلانکتونیک، جنوب غرب ایلام، پایان نامه کارشناسی ارشد، دانشگاه اصفهان، 322. ##
[25]. Rikhtegarzadeh M, Vaziry S M, Aleali M, Amir Bakhtiar H, Jahani D (2017) Microbiostratigraphy, microfacies and depositional environment of the Sarvak and Ilam Formations in the Gachsaran Oilfield, Southwest Iran, Micropaleontology, 63, 6: 413-428. ##
[26]. Mehrabi H, Rahimpour-Bonab H, Enayati-Bidgoli A H, Navidtalab A (2013) Depositional environment and sequence stratigraphy of the Upper Cretaceous Ilam Formation in central and southern parts of the Dezful Embayment, SW Iran, Carbonate and Evaporites, 29, 3. ##
[27]. وزیری مقدم ح، صفری ا (1382) میکروفاسیس‌ها و محیط رسوبی سازند ایلام در منطقه سمیرم، مجله پژوهشی دانشگاه اصفهان) علوم پایه، 18: 74-59. ##
[28]. Zohrabzadeh M, Rahimpour–Bonab H, Aleali1 M (2020) The middle cretaceous – lower miocene 3D petroleum system modeling of kupal oil field, South West of Iran, Dezful Embayment: Geopersia, 10, 1: 165-194. ##
[29]. Atashbari V, Tingay M, Amrouch K H (2018) Stratigraphy, tectonics and hydrocarbon habitat of the Abadan Plain Basin: a geological review of a prolific Middle Eastern hydrocarbon province, Geosciences, 8, 12: 496, 17. ##
[30]. Rajabi M, Sherkati S, Bohloli B, Tingay M (2010) Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran, Tectonophysics, 492: 192–200. ##
[31]. Sherkati S, Letouzey J (2004) Variation of structural style and basin evolution in the Central Zagros (Izeh Zone and Dezful Embayment) Iran, Marin and Petroleum Geology, 21: 535-554. ##
[32]. Dunham R J (1962) Classification of carbonate rocks according to depositional texture, American Association of Petroleum Geologists (AAPG) Memoir, 1: 108-121. ##
[33]. Schlager M (2002) Sedimentology and sequence stratigraphy of carbonate rocks: Amsterdam (Vrije Universiteit/ Earth and Life Sciences), 146: 114. ##
[34]. Choquette P W, Pray, L C (1970) Geological nomenclature and classification of porosity in sedimentary carbonates: American Association of Petroleum Geologists (AAPG) Bulletin, 54: 207- 250. ##
[35]. Richter F M, Rowley D B, DePaolo D J (1992) Sr-isotope evolution of seawater: the role of tectonics, Earth and Planetary Science Letters, 109: 11-23. ##
[36]. Zhang Y, Yang T, Hohl S V, Zhu B, He T, Pan W, Chen Y, Yao X, Jiang S (2020) Seawater carbon and strontium isotope variations through the late Ediacaran to late Cambrian in the Tarim Basin, Precambrian Research, 105769. ##
[37]. موسوی زاده س م ع (1398) بررسی روند تغییرات دمای دیرینه در نهشته‌های کربناته آپتین - آلبین در زون چین‌خورده- راندة زاگرس بر مبنای داده‌های ایزوتوپ اکسیژن. پژوهش‌های چینه‌نگاری و رسوب‌شناسی،  35، 1: 72-55. ##
[38] رحیم‌پور بناب ح (1391) چینه‌شناسی سازندهای ایلام و سروک با استفاده از ایزوتوپ استرانسیم و تعیین مرز انها در بخش میانی فرو افتادگی دزفول، مناطق نفتخیز جنوب، طرح 0274-11-87، 447. ##
[39]. Neto I A L, Misságia, R M, Ceia M A, Archilha N L, Oliveira L C (2014) Carbonate pore system evaluation using the velocity–porosity–pressure relationship, digital image analysis, and differential effective medium theory, Journal of Applied Geophysics, 110: 23–33. ##
[40]. Lamarche J, Lavenu A P C, Gauthier B D M, Guglielmi Y, Jayet O (2012) Relationships between fracture patterns, geodynamics and mechanical stratigraphy in carbonates (South-East Basin, France): Tectonophysics, 581: 231-245. ##
[41]. Moore C H, Wade W J (2013) Carbonate reservoir porosity and diagenesis in a sequence stratigraphic framework: Developments in Sedimentology, 67: 1- 374. ##
[42]. Tucker, M. E. (2001) Sedimentary petrology: an introduction to the origion of sedimentary rocks: Blackwell, Scientific Publication, London, 260. ##
[43]. Makhloufi Y, Collin P Y, Bergerat F, Casteleyn L, Claes S, David C H, Menendez B, Monna M, Robion P H, Sizun J P, Swennen R, Rigollet C H (2013) Impact of sedimentology and diagenesis on the petrophysical properties of a tight oolitic carbonate reservoir, The case of the oolithe Blanche Formation (Bathonian, Paris Basin, France), Marine and Petroleum Geology, 48: 323-340. ##
[44]. Sahraeyan M, Bahrami M, Arzaghi S (2014) Facies analysis and depositional invironments of the Oligocene-Miocene Asmari Formation, Zagros Basin, Iran, Geoscience Frontiers, 5: 1- 10. ##
[45]. El-Saiy A K, Jordan B R (2007) Diagenetic aspects of tertiary carbonates west of the Northern Oman Mountains, United Arab Emirates, Journal of Asian Earth Sciences, 31: 35-43. ##
 
[46]. Zhen-Kui J, Chun-Hui L (2008) Quantitative study on reservoir diagenesis in Northern Dagang Structural Belt, Huanghua Depression, Petroleum Exploration and Development, 35, 5: 581–587. ##
[47]. Henares S, Caracciolo L, Cultrone G, Fernandez J, Viseras C (2014) The role of diagenesis and depositional facies on pore system evolution in a Triassic outcrop analogue (SE Spain), Marine and Petroleum Geology, 51: 136–151. ##
[48]. Adabi M H, Asadi Mehmandosti E (2008) Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izeh, SW Iran, Journal of Asian Earth Sciences, 33: 267–277. ##
[49] Deville De Periere M, Durlet C, Vennin E, Lambert L, Bourillot R, Caline B, and Poli E (2011) Morphometry of micrite particles in Cretaceous microporous limestones of the Middle East, Influence on reservoir properties: Marine and Petroleum Geology, 28: 1727–1750. ##
[50]. Hoseinabadi M, Mahboubi A, Mirab Shabestari G R, Motamed A (2016) Depositional environment, diagenesis, and geochemistry of Devonian Bahram Formation carbonates, Eastern Iran, Arab Journal Geoscience, 9: 70. [51] Tucker M E, Wright V P (1990) Carbonate sedimentology, Oxford, Blackwell Scientific Publications, 482. ##
[52]. Shakeri A, Parham S (2014) Microfacies, depositional environment and diagenetic processes of the Mauddud member, in a feld in the Persian Gulf, Journal Geological Geoscience, 2: 67–78. ##
[53]. Aghaei A, Mahboubi A, Moussavi- Harami R, Nadjafi M, Hakrapani G J (2014) Carbonate diagenesis ofthe Upper Jurassic succession in the West of Binalud- Eastern Alborz (NE Iran), Journal Geological Society of India, 83: 311- 328. ##
[54]. Ebadati N (2018) Fractures effect in reservoir quality of Ilam and Sarvak formations in Hengam oilfield using imaging logs, Journal of Geolical Society of India, 92: 491–497. ##
[55]. Vandeginste V, John C M, Manning C (2013) Interplay between depositional facies, diagenesis and early fractures in the Early Cretaceous Habshan Formation, Jebel Madar, Oman: Marine and Petroleum Geology, 43: 489-503. ##
[56]. Hood S D, Nelson C S, Kamp P J J (2004) Burial dolomitisation in a cool-water carbonate petroleum reservoir: the Oligocene Tikorangi Formation, Taranaki Basin, New Zealand: Sedimentary Geology, 172: 117-138. ##
[57]. Mehmood M, Yaseen M, Khan E U, Khan M J (2018) Dolomite and dolomitization model- A short review, International Journal of Hydrology, 2, 5: 549‒553. ##
[58]. Hajikazemi E, Al-Aasam I S, and Conigilo M (2010) Subaerial exposure and meteoric diagenesis of the Cenomanian–Turonian Upper Sarvak Formation, southwestern Iran, Geological Society, London, Special Publications, 330: 253-272. ##
[59]. Wang Y M, Hendy I L, Latimer J C, Bilardello D (2019) Diagenesis and iron paleo-redox proxies: New perspectives from magnetic and iron speciation analyses in the Santa Barbara Basin, Chemical Geology, 519: 95-109. ##
[60]. Soua M (2012) Application of facies associations, integrated prediction error filter analysis, and chemostratigraphy to the organic-rich and siliceous Cenomanian-Turonian sequence, Bargou Area, Tunisia: Integrated sequence stratigraphic analysis, Journal of Geological Research, 15. ##
[61]. Yuan R, Zhu R, Qu J, Wu J, You X, Sun Y, Zhou Y (2018) Utilizing integrated prediction error filter analysis (INPEFA) to divide base-level cycle of fan-deltas: A case study of the Triassic Baikouquan Formation in Mabei Slope Area, Mahu Depression, Junggar Basin, China, Open Geoscience, 10: 1. ##