بهینه‌سازی شرطی تولید در یک مدل یکپارچه با استفاده از کنترل‌فشار برای حذف جریان لخته‌ای قبل از جداساز

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

بهینه‌سازی شرطی یکی از بهترین روش‌ها برای افزایش تولید از مخازن هیدروکربنی است. مدل‌سازی یکپارچه تولید می‌تواند تولید را از مخازن بهینه و مدیریت کند. در این پژوهش یک روش جدید برای بهینه‌سازی سیستم‌های یکپارچه تولید ارائه شده است. اجزا مدل یکپارچه مدل‌های مخزن، چاه، چوک سطحی، خط لوله و جداساز هستند. تأثیر رژیم‌های جریان ورودی جداساز و شرایط عملکرد جداساز سطحی بر کارایی عملکرد جداساز و سیستم‌های تولید نفت در این مدل قابل اغماض نیست. این مدل شامل کنترل‌کننده فشار جداساز است و تابع هدف حداکثر کردن نفت در تانک ذخیره است. محدودیت بهینه‌سازی عدم تشکیل جریان لخته‌ای در ورودی جداساز است. مدل بهینه‌سازی دارای عملکرد عالی برای بهینه‌سازی سیستم‌های یکپارچه در مخازن پایدار، گذرا و شبه‌پایدار است. مدل بهینه‌سازی می‌تواند در حالت‌هایی که چوک از بحرانی به زیربحرانی تغییر می‌کند یا برعکس، عالی عمل کند. مقدار نفت تجمعی در تانک ذخیره برای مدل یکپارچه با کنترل جریان لخته‌ای برابر با BBL 820، و برای مدل یکپارچه بدون کنترل جریان لخته‌ای برابر با BBL  3/934 و برای نرم‌افزار اولگا برابر با BBL 5/741 است. استفاده از مدل یکپارچه بهینه با کنترل جریان لخته‌ای علاوه‌بر افزایش تولید نفت در تانک ذخیره باعث جلوگیری از تشکیل جریان لخته‌ای نیز می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Constraint Optimization of Production in an Integrated Model using Pressure Control to Eliminate Slug Flow before the Separator

نویسندگان [English]

  • mehdi fadaei
  • Mohammad javad Ameri
  • Yousef Rafiei
Department of petroleum engineering, Faculty of Petroleum engineering, Amir Kabir university of technology, Tehran, Iran
چکیده [English]

Conditional optimization is one of the best methods to increase production from hydrocarbon reservoirs. Integrated production modeling can optimize and manage production from reservoirs. In this research, a new method for optimizing integrated production systems is presented. The components of the integrated model are the reservoir, well, surface choke, pipeline, and separator models. The effect of separator inlet flow regimes and surface separator operation conditions on the efficiency of separator operation and oil production systems in this model cannot be neglected. This model includes the separator pressure controller and the objective function is to maximize the oil in the storage tank. The limitation of optimization is the non-formation of clotted flow at the inlet of the separator. The optimization model has excellent performance for optimizing integrated systems in stable, transient, and quasi-stable reservoirs. The optimization model can perform well in situations where the choke changes from critical to subcritical or vice versa. The amount of accumulated oil in the storage tank for the integrated model with clotted flow control is equal to BBL820, and for the integrated model without clotted flow control is equal to BBL 934.3 and for Olga software is equal to BBL 741.5. Using the optimal integrated model with clotted flow control, in addition to increasing oil production in the storage tank, also prevents the formation of slug flow.

کلیدواژه‌ها [English]

  • Optimizing
  • Constraint
  • integrated
  • Control
  • Slug
[1]. Carroll, J.A.III, & Horne, R.N., (1992), Multivariate Optimization of Production Systems, Journal of Petroleum Technology, July, 782-831. ##
[2]. Hepguler, G., Barua, S., & Bard, W. (1997), Integration of a field surface and production network with a reservoir simulator, SPE Computer Applications, 9(03), 88-92, doi.org/10.2118/38937-PA.‏ ##
[3]. Yang, D., Zhang, Q., & Gu, Y. (2003). Integrated optimization and control of the production-injection operation systems for hydrocarbon reservoirs, Journal of Petroleum Science and Engineering, 37(1-2), 69-81, doi.org/10.1016/S0920-4105(02)00311-X.‏ ##
[4]. Queipo, N. V., Zerpa, L. E., Goicochea, J. V., Verde, A. J., Pintos, S. A., & Zambrano, A. (2003), A model for the integrated optimization of oil production systems, Engineering with Computers, 19(2), 130-141, doi.org/10.1007/s00366-003-0255-1.‏ ##
[5]. Nadar, M. S., Kulkarni, R. N., Lemanczyk, Z. R., & Aggarwal, P. (2006), Development of an Integrated Production Network Model for Heera Field, In SPE Asia Pacific Oil & Gas Conference and Exhibition, OnePetro, doi.org/10.2118/101089-MS.‏ ##
[6]. Litvak, M. L., Gane, B. R., Williams, G., Mansfield, M., Angert, P. F., Macdonald, C. J., & Walker, G. J. (2007), Field development optimization technology, In SPE reservoir simulation symposium, OnePetro.‏ ##
[7]. Rahmawati, S. D., Whitson, C. H., Foss, B., & Kuntadi, A. (2012), Integrated field operation and optimization. Journal of Petroleum Science and Engineering, 81, 161-170, doi.org/10.1016/j.petrol.2011.12.027.‏ ##
[8]. Foroud, T., Seifi, A., & AminShahidy, B. (2016), An efficient optimization process for hydrocarbon production in presence of geological uncertainty using a clustering method: A case study on Brugge field, Journal of Natural Gas Science and Engineering, 32, 476-490, doi.org/10.1016/j.jngse.2016.04.059.‏ ##
[9]. Liu, Z., Forouzanfar, F., & Zhao, Y. (2018), Comparison of SQP and AL algorithms for deterministic constrained production optimization of hydrocarbon reservoirs, Journal of Petroleum Science and Engineering, 171, 542-557, doi.org/10.1016/j.petrol.2018.06.063.‏ ##
[10]. Lee, S. H., Choong, T. S., Abdullah, L. C., Abdul Razak, M. A., & Ban, Z. H., (2018), Experimental and CFD modelling: impact of the inlet slug flow on the horizontal gas–liquid separator, Energies, 12(1), 41, doi.org/10.3390/en12010041.‏ ##
[11]. Chin, R. (2015), The Savvy Separator Series: Part 4. The Ghosts of Separators Past, Present, and Future, Oil and Gas Facilities, 4(06), 18-23, doi.org/10.2118/1215-0018-OGF.‏ ##
[12]. Miyoshi, M., Doty, D. R., & Schmidt, Z. (1988), Slug-catcher design for dynamic slugging in an offshore production facility, SPE Production Engineering, 3(04), 563-573, doi.org/10.2118/14124-PA.‏ ##
[13]. Orioha, H., Gruba, C., Muoneke, G., & Ezuka, I. (2012), Application of IPM Modeling for Production Surveillance, Allocation and Optimization. In SPE International Production and Operations Conference & Exhibition, OnePetro, doi.org/10.2118/157435-MS. ##‏
[14]. Fair, W. B. (2019), an integrated model for optimizing production of marginal oil fields (Doctoral dissertation), dx.doi.org/10.26153/tsw/2100.‏ ##
[15]. Fadaei, M., Ameri, M. J., Rafiei, Y., & Ghorbanpour, K. (2021), A modified semi-empirical correlation for designing two-phase separators. Journal of Petroleum Science and Engineering, 205, 108782, doi.org/10.1016/j. ##
petrol.2021.108782.‏ ##
[16]. Wosowei, J., & Shastry, C. (2021), Oilfield Performance Prediction using Integrated Modeling and Simulation (MBAL) Suite, doi.org/10.26821/IJSHRE.9.8.2021.9814.‏ ##
[17]. Doroshenko, O., Cimic, M., Singh, N., & Machuzhak, Y. (2021), Integrated Production Model as a Tool for Optimization the Development Strategy of the Sakhalin Oil and Gas Condensate Field, SPE Eastern Europe Subsurface Conference, OnePetro, doi.org/10.2118/208502-MS.‏ ##
[18]. Paul, S., Dukhoo, G., Phillip, M., & Persadsingh, J. (2021), Improving Production Forecasting in a Mature Onshore Oilfield Brownfield in Southern Trinidad by Making Use of Software Modeling, In SPE Trinidad and Tobago Section Energy Resources Conference. OnePetro, doi.org/10.2118/200953-MS.‏ ##
[19]. Abdollahi, F., Hosseini, S., Sabet, M., Esmaeili-Faraj, S. H., & Amiri, F. (2021), A novel study of the gas lift process using an integrated production/injection system using artificial neural network approach, Modeling Earth Systems and Environment, 7(3), 2101-2112.‏ ##
[20]. Beggs, H. Dale., (1991), Production optimization using nodal analysis. ##
[21]. Davarpanah, A., & Mirshekari, B. (2018), Experimental study and field application of appropriate selective calculation methods in gas lift design, Petroleum Research, 3(3), 239-247, doi.org/10.1016/j.ptlrs.2018.03.005.‏ ##
[22]. Zhu, H., Qi, Y., Zhang, F., & Zhang, J. (2020), Calculation method of production pressure drop based on BP neural network velocity pipe string production in CBM wells, In IOP Conference Series: Earth and Environmental Science, 619, (1), 012044, IOP Publishing, DOI 10.1088/1755-1315/619/1/012044.‏ ##
[23]. Huang, Q., Lin, X., He, Y., Wang, C., Hu, Y., Ding, H., & Li, J. (2020), «Mathematical Simulation and program of gas-liquid two-phase well flow pattern, In E3S Web of Conferences (Vol. 185, p. 01087), EDP Sciences, doi.org/10.1051/e3sconf/202018501087.‏ ##
[24]. Cheng, Y., Wu, R., Liao, R., & Liu, Z. (2022), Study on calculation method for wellbore pressure in gas wells with large liquid production, Processes, 10(4), 685, doi.org/10.3390/pr10040685.‏ ##
[25]. Usov, E. V., Ulyanov, V. N., Butov, A. A., Chuhno, V. I., & Lyhin, P. A. (2020), Modelling Multiphase Flows of Hydrocarbons in Gas-Condensate and Oil Wells, Mathematical Models and Computer Simulations, 12(6), 1005-1013.‏ ##
[26]. Qader, M. R. (2019), Performance analyses techniques to optimize an oil well in Northern Iraq, Doctoral dissertation, Near East University.‏ ##
[27]. Fadaei, M., Ameli, F., & Hashemabadi, S. H. (2019), Experimental Study and CFD Simulation of Two-phase Flow Measurement Using Orifice Flow Meter, Journal of Petroleum Research, 29(98-5), 85-96, doi: 10.22078/PR.2019.3642.2711.‏ ## [28]. Fadaei, M., Ameli, F., & Hashemabadi, S. H. (2021), Investigation on different scenarios of two-phase flow measurement using Orifice and Coriolis flow meters, Experimental and Modeling Approaches, Measurement, 175, 108986, doi.org/10.1016/j.measurement.2021.108986.‏ ##
[29]. Fadaei, M., Ameri, M. J., Rafiei, Y., & Ghorbanpour, K. (2021), A modified semi-empirical correlation for designing two-phase separators, Journal of Petroleum Science and Engineering, 205, 108782, doi.org/10.1016/j.petrol.2021.108782.‏
[30]. Beggs, H. D., & BRILL, James P., 1991, Two-Phase flow in pipes, Doctoral dissertation, University of Tulsa, Tulsa, Oklahoma. ##
[31]. Queipo, n. v., Zerpa, L. E., Goicochea, J. V., Verde, A. J., Pointos, S. A., & Zambrano, A. (2003), A model for the integrated production systems, Engineering with Computers, 19, 2: 130-141. ##
[32]. Shi, S., Han, G., Wu, B., Xu, K., Li, Z., & Sun, K. (2021), An experimental study of liquid unloading in the curve section of horizontal gas wells, Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 76, 69, doi.org/10.2516/ogst/2021051. ##
[33]. Isemin, I., & Nkundu, K. A. (2021), Investigating the Use of Machine Learning Models for the Prediction of Pressure Gradient and Flow Regimes in Multiphase Flow in Horizontal Pipes, In SPE Nigeria Annual International Conference and Exhibition, OnePetro, doi:10.2118/208410-MS. ##
[34]. Shi, S., Li, J., Yang, X., Liu, C., Liao, R., Zhang, X., & Liao, J. (2021), Study on the Pressure Drop Variation and Prediction Model of Heavy Oil Gas-Liquid Two-Phase Flow, Geo-fluids, doi.org/10.1155/2021/8813167. ##
[35]. Musa, V. A., Mahmood, R. A., Khalifa, S. M. N., Ali, O. M., & Abdulkareem, L. A. (2021), Flow patterns of oil-gas and pressure gradients in near-horizontal flow pipeline: Experimental investigation using differential pressure transducers, Vol, 39, 621-628, doi.org/10.18280/ijht.390233.‏ ##
[36]. Wang, Z. B., Ling, J. Q., Sun, T. L., Shi, H. Y., & Zhu, G. (2021), A simple analytical model to predict liquid unloading in the horizontal gas well. Journal of Hydrodynamics, 33(5), 1056-1064. ##
[37]. Luo, X., He, L., Liu, X., & Lü, Y. (2014), Influence of separator control on the characteristics of severe slugging flow, Petroleum Science, 11(2), 300-307, doi: 10.1007/s12182-014-0344-3.‏ ##
[38]. Yang, Z., Juhl, M., & Løhndorf, B. (2010), On the innovation of level control of an offshore three-phaseseparator, In 2010 IEEE International Conference on Mechatronics and Automation (pp. 1348-1353), IEEE, doi: 10.1109/ICMA.2010.5588340.‏ ##
[39]. Backi, C. J., & Skogestad, S. (2017), A simple dynamic gravity separator model for separation efficiency evaluation incorporating level and pressure control, In 2017 American Control Conference (ACC) (pp. 2823-2828), IEEE, doi: 10.23919/ACC.2017.7963379.‏ ##
[40]. Yang, Z., Juhl, M., & Løhndorf, B. (2010), On the innovation of level control of an offshore three-phase separator, In 2010 IEEE International Conference on Mechatronics and Automation (pp. 1348-1353), IEEE, doi: 10.1109/ICMA.2010.5588340.‏ ##
[41] Luo, X., He, L., Liu, X., & Lu. Y. (2014), Influence of separator control on the characteristics of severe slugging flow, Petroleum science, 11(2), 300-307, doi: 10.1007/s12182-014-0344-3. ##
[42]. Al-Jawad, M. S., & HASSAN, O. F. (2010), Correlating optimum stage pressure for sequential separator systems, SPE Projects, Facilities & Construction, 5(01), 13-16, doi.org/10.2118/118225-PA. ##
[43]. Bahadori, A., Vulthaluru, H. B., & Mokhatab, s. (2008), Optimizing separator pressures in the multistage crude oil production unit, Asia-pacific Journal of Chemical Engineering, 3(4), 380-386, doi.org/10.1002/apj.159. ##
[44]. Kylling, W. (2009), Optimizing separator pressure in a multistage crude oil production plant Master›s thesis, Institute for Teknisk Kybernetikk, hdl.handle.net/11250/259760. ##
[45]. Kuchuk, F. J. (2009), Radius of investigation for reserve estimation from pressure transient well tests, In SPE Middle East Oil and Gas Show and Conference, OnePetro, doi.org/10.2118/120515-MS.‏ ##