بررسی اثر هم افزایی نانوسیالات هیبریدی پراکنده در آب هوشمند اصلاح‌شده با ماده‌فعال‌سطحی سبز بر پایداری، ویسکوزیته وکشش‌بین‌سطحی در تماس با نفت میدان جنوب‌غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی نفت، دانشکده‌ مهندسی شیمی، نفت و گاز، دانشگاه سمنان، سمنان، ایران

2 گروه مهندسی نفت، دانشکده‌ مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران، تهران، ایران

3 گروه مهندسی شیمی، دانشکده‌ مهندسی شیمی، نفت و گاز، دانشگاه سمنان، سمنان، ایران.

10.22078/pr.2024.5376.3393

چکیده

هنگامی‌که ترکیب آب نمک، موادفعال‌سطحی و نانوذرات به‌صورت همزمان استفاده می‌‍شود، کشش‌بین‌سطحی می‌تواند به کمترین مقدار خود برسد و متعاقبا بازیافت نفت افزایش یابد. در این مقاله از روش ترکیبی نانوذرات اکسیدفلزی اصلاح‌شده با ماده‌فعال‌سطحی دوست‌دار محیط زیست پراکنده شده در سیالات‌پایه با شوری متفاوت، استفاده شد. از نانوذرات سیلیکا و گاما-آلومینا و نانوهیبریدهای آنها با نسبت‌جرمی 10:90، 30:70 و 50:50 استفاده شد. همچنین آب‌مقطر و ‌آب‌های هوشمند با شوری ppm 4071، 8142، 40710 و 40710 به عنوان سیالات‌پایه در نظر گرفته شدند. وجود یون‌های کلسیم و منیزیم در آب نمک باعث ایجاد خواص دوخصلتی در نانوسیالات می‌شود که بشدت باعث ناپایداری نانومواد در مجاورت با آب نمک می‌گردد. از این رو به منظور پایداری بیشتر از صمغ‌عربی به عنوان یک ماده فعال‌سطحی سبز استفاده شد. پس از ارزیابی مدت زمان پایداری نانوسیالات‌هیبرید، آزمون بررسی کشش‌بین‌سطحی در دماهای C° 25 و 60 و ویسکوزیته در دماهای C° 25، 35 ، 45و 55 انجام شد. نتایج آزمایشگاهی نشان داد در نانوسیالات هیبریدی که از صمغ‌عربی استفاده نشد حدوداً تا دو ساعت پایداری خود را حفظ کردند. از طرفی دیگر نتایج نشان داد که افزایش دما می‌تواند منجر به کاهش کشش‌بین‌سطحی و ویسکوزیته برای نانوسیال‌ها شود. کمترین کشش بین سطحی در دمای C° 60 برای نانوهیبرید با نسبت جرمی گاما-آلومینا و سیلیکا 50:50 در آب هوشمند با شوری ppm 4071 به‌دست آمد. کمترین ویسکوزیته در دمای C° 55 برای نانوهیبرید با نسبت‌جرمی50:50 در آب‌مقطر گزارش شد. به حداقل رسیدن کشش‌بین‌سطحی و بهبود رفتار رئولوژی نانوسیالات بهینه به سمت یک سیستم آب‌دوست قوی می‌تواند یک راه‌حل امیدوارکننده در کاربردهای ازدیاد و برداشت نفت در نظر گرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Synergistic Effect of Hybrid- nanofluids (Hnfs) Dispersed on Smart Water, Modified with Green Surfactant on Solution Stability, Viscosity and Interfacial Tension in Contact with Crude Oil of A Southwestern Field of Iran

نویسندگان [English]

  • Azin Khajeh-kulaki 1
  • Seyed Mojtaba Hosseini-Nasab 2
  • Faramarz Hormozi 3
1 Faculty of Petroleum Engineering, University of Semnan, Iran.
2 School of Chemical & Petroleum and Gas Engineering, University of Science & Technology Iran.
3 Faculty of Chemical & Petroleum and Gas Engineering, University of Semnan Iran
چکیده [English]

When the combination of salinity water, surfactants and Nanoparticles (NPs) are used simultaneously, the interfacial tension (IFT) could reach its lowest value and subsequently the oil recovery could be improved. In this paper, the method of modified metal oxide NPs with environmentally friendly surfactant dispersed in different base fluids was applied. Silica and gamma-alumina NPs and their hybrid nanofluids (HNFs) were used with mass ratios of 10:90, 30:70 and 50:50. Also, distilled water and various smart waters with salinities 4071, 8142, 20400 and 40710 (ppm) were considered as basic fluids. The presence of Ca2+ and Mg2+ ions in salinity water creates amphoteric properties in HNFs, which greatly causes the instability of nanomaterials in the vicinity of saline water. Therefore, in order to be more stable, gum arabic was used as a green surfactant.  After evaluating the duration of stability of HNFs, IFT was tested at temperatures 25 and 60 °C and viscosity at temperatures 25, 35, 45 and 55 °C. On the other hand, the results showed that an increase at temperature could lead to a decrease at IFT and viscosity for nanofluids. The lowest IFT at 60 °C was obtained for the HNFs with a mass ratio of gamma-alumina and silica of 50:50 dispersed in smart water with a salinity of 4071 ppm. The lowest viscosity at 55 °C was reported for HNFs with a mass ratio of 50:50 dispersed in distilled water. Minimizing the IFT and improving the rheological behavior of optimal nanofluids towards a strong water wet system could be considered as a promising solution in EOR applications.

کلیدواژه‌ها [English]

  • Nanofluid
  • Stability
  • Interfacial Tension
  • Viscosity
  • Temperature Gradient
[1]. Bahari, N. M., Che Mohamed Hussein, S. N., & Othman, N. H. (2021). Synthesis of Al2O3–SiO2/water hybrid nanofluids and effects of surfactant toward dispersion and stability. Particulate Science and Technology, 39(7), 844-858. doi.org/10.1080/02726351.2020.1838015.##
[2]. Lau, H. C., Yu, M., & Nguyen, Q. P. (2017). Nanotechnology for oilfield applications: Challenges and impact. Journal of Petroleum Science and Engineering, 157, 1160-1169. doi.org/10.1016/j.petrol.2017.07.062. ##
[3]. Rahman, M. M., Haroun, M., Al Kobaisi, M., Kim, M., Suboyin, A., Somra, B., Ponnambathayil, J.A. and & Punjabi, S. (2022). Insights into nanoparticles, electrokinetics and hybrid techniques on improving oil recovered in carbonate reservoirs. Energies, 15(15), 5502. doi.org/10.3390/en15155502. ##
[4]. El-Diasty, A. I., & Aly, A. M. (2015, September). Understanding the mechanism of nanoparticles applications in enhanced oil recovery. In SPE North Africa technical conference and exhibition (p. D021S009R004). SPE. doi.org/10.2118/175806-MS. ##
[5]. Nowrouzi, I., Manshad, A. K., & Mohammadi, A. H. (2019). Effects of TiO2, MgO, and γ-Al2O3 nano-particles in carbonated water on water-oil interfacial tension (IFT) reduction in chemical enhanced oil recovery (CEOR) process. Journal of Molecular Liquids, 292, 111348. doi.org/10.1016/j.molliq.2019.111348. ##
[6]. Adil, M., Lee, K. C., Zaid, H. M., & Manaka, T. (2020). Role of phase-dependent dielectric properties of alumina nanoparticles in electromagnetic-assisted enhanced oil recovery. Nanomaterials, 10(10), 1975. doi.org/10.3390/nano10101975. ##
[7]. Mahmoudpour, M., & Pourafshary, P. (2021). Investigation of the effect of engineered water/nanofluid hybrid injection on enhanced oil recovery mechanisms in carbonate reservoirs. Journal of Petroleum Science and Engineering, 196, 107662. doi.org/10.1016/j.petrol.2020.107662. ##
[8]. Hu, Y., Zhao, Z., Dong, H., Vladimirovna Mikhailova, M., & Davarpanah, A. (2021). Retracted: hybrid application of nanoparticles and polymer in enhanced oil recovery processes. Polymers, 13(9), 1414. doi.org/10.3390/polym13091414. ##
[9]. Dardan, E., Afrand, M., & Isfahani, A. M. (2016). Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Applied Thermal Engineering, 109, 524-534. doi.org/10.1016/j.applthermaleng.2016.08.103. ##
[10]. Ansari, H., Riazi, M., & Sabbaghi, S. (2018). An experimental investigation of wettability alteration of carbonated rock using alpha-alumina nanofluid. Journal of Petroleum Research, 28(97-5), 47-58.doi: 10.22078/pr.2018.3098.2460. ##
[11]. Mansouri, M., Nakhaee, A., & Pourafshary, P. (2019). Effect of SiO2 nanoparticles on fines stabilization during low salinity water flooding in sandstones. Journal of Petroleum Science and Engineering, 174, 637-648. doi.org/10.1016/j.petrol.2018.11.066. ##
[12]. Cacuaa K. Ordoñezb F. Zapatab C. Herrerab B. Pabóna E. Buitrago-Sierra R. (2019). Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 583.doi: 10.22078/pr.2024.5376.3393. ##
[13]. Betancur, S., Giraldo, L. J., Carrasco-Marín, F., Riazi, M., Manrique, E. J., Quintero, H., García, H.A., Franco-Ariza, C.A. & Cortés, F. B. (2019). Importance of the nanofluid preparation for ultra-low interfacial tension in enhanced oil recovery based on surfactant–nanoparticle–brine system interaction. ACS omega, 4(14), 16171-16180. doi.org/10.1021/acsomega.9b02372. ##
[14]. Behera, U. S., & Sangwai, J. S. (2021). Nanofluids of silica nanoparticles in low salinity water with surfactant and polymer (SMART LowSal) for enhanced oil recovery. Journal of Molecular Liquids, 342, 117388. doi.org/10.1016/j.molliq.2021.117388. ##
[15]. Al-Anssari, S., Nwidee, L. N., Ali, M., Sangwai, J. S., Wang, S., Barifcani, A., & Iglauer, S. (2017). Retention of silica nanoparticles in limestone porous media. In SPE Asia Pacific Oil and Gas Conference and Exhibition (p. D021S009R006). SPE. doi.org/10.2118/186253-MS. ##
[16]. Hendraningrat, L., Li, S., & Torsæter, O. (2013). Effect of some parameters influencing enhanced oil recovery process using silica nanoparticles: an experimental investigation. In SPE Reservoir Characterisation and Simulation Conference and Exhibition (pp. SPE-165955). SPE. doi.org/10.2118/165955-MS. ##
[17]. Zallaghi, M., Kharrat, R., & Hashemi, A. (2018). Improving the microscopic sweep efficiency of water flooding using silica nanoparticles. Journal of Petroleum Exploration and Production Technology, 8, 259-269. ##
[18]. Hou, B., Jia, R., Fu, M., Wang, Y., Jiang, C., Yang, B., & Huang, Y. (2019). Wettability alteration of oil-wet carbonate surface induced by self-dispersing silica nanoparticles: Mechanism and monovalent metal ion’s effect. Journal of Molecular Liquids, 294, 111601. doi.org/10.1016/j.molliq.2019.111601. ##
[19]. Nazari Moghaddam, R., Bahramian, A., Fakhroueian, Z., Karimi, A., & Arya, S. (2015). Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks. Energy & Fuels, 29(4), 2111-2119. doi.org/10.1021/ef5024719. ##
[20]. Yekeen, N., Padmanabhan, E., Idris, A. K., & Ibad, S. M. (2019). Surfactant adsorption behaviors onto shale from Malaysian formations: Influence of silicon dioxide nanoparticles, surfactant type, temperature, salinity and shale lithology. Journal of Petroleum Science and Engineering, 179, 841-854. doi.org/10.1016/j.petrol.2019.04.096. ##
[21]. Keykhosravi, A., & Simjoo, M. (2020). Enhancement of capillary imbibition by Gamma-Alumina nanoparticles in carbonate rocks: Underlying mechanisms and scaling analysis. Journal of Petroleum Science and Engineering, 187, 106802. doi.org/10.1016/j.petrol.2019.106802. ##
[22]. Seid Mohammadi, M., Moghadasi, J., & Naseri, S. (2014). An experimental investigation of wettability alteration in carbonate reservoir using γ-Al2O3 nanoparticles. Iranian Journal of Oil and Gas Science and Technology, 3(2), 18-26. doi.org/10.22050/ijogst.2014.6034. ##
[23]. Kiani, S., Mansouri Zadeh, M., Khodabakhshi, S., Rashidi, A., & Moghadasi, J. (2016). Newly prepared Nano gamma alumina and its application in enhanced oil recovery: an approach to low-salinity waterflooding. Energy & Fuels, 30(5), 3791-3797. doi.org/10.1021/acs.energyfuels.5b03008. ##
[24]. Pourafshary, P., & Moradpour, N. (2019). Hybrid EOR methods utilizing low-salinity water. Enhanc. Oil Recovery Process. New Technol, 8, 25. ##
[25]. Mofrad, S. K., & Dehaghani, A. H. S. (2020). An experimental investigation into enhancing oil recovery using smart water combined with anionic and cationic surfactants in carbonate reservoir. Energy Reports, 6, 543-549. doi.org/10.1016/j.egyr.2020.02.034. ##
[26]. Dabiri, A., & Honarvar, B. (2020). Synergic impacts of two non-ionic natural surfactants and low salinity water on interfacial tension reduction, wettability alteration and oil recovery: Experimental study on oil wet carbonate core samples. Natural Resources Research, 29(6), 4003-4016. ##
[27]. Moradi, S., Isari, A. A., Bachari, Z., & Mahmoodi, H. (2019). Combination of a new natural surfactant and smart water injection for enhanced oil recovery in carbonate rock: Synergic impacts of active ions and natural surfactant concentration. Journal of Petroleum Science and Engineering, 176, 1-10. doi.org/10.1016/j.petrol.2019.01.043. ##
[28]. Ahmadi, M. A., & Shadizadeh, S. R. (2018). Spotlight on the new natural surfactant flooding in carbonate rock samples in low salinity condition. Scientific Reports, 8(1), 10985. ##
[29]. Madani, M., Zargar, G., Takassi, M. A., Daryasafar, A., Wood, D. A., & Zhang, Z. (2019). Fundamental investigation of an environmentally-friendly surfactant agent for chemical enhanced oil recovery. Fuel, 238, 186-197. doi.org/10.1016/j.fuel.2018.10.105. ##
[30]. Mahmoudi, S., Jafari, A., & Javadian, S. (2019). Temperature effect on performance of nanoparticle/surfactant flooding in enhanced heavy oil recovery. Petroleum Science, 16, 1387-1402. ##
[31]. Orodu O, D. Orodu K, B. Alfolabi R, O. Dafe E, A. (2018).”Dataset on experimental investigation of gum arabic coated alumina nanoparticles for enhanced recovery of nigerian medium crude oil”. Data in brief, 2018. 19: p. 475-480. doi.org/10.1016/j.dib.2018.05.046. ##
[32]. Sowunmi, A. O., Efeovbokhan, V. E., Orodu, O. D., & Oni, B. A. (2022). Polyelectrolyte–nanocomposite for enhanced oil recovery: influence of nanoparticle on rheology, oil recovery and formation damage. Journal of Petroleum Exploration and Production Technology, 12(2), 493-506. ##
[33]. Yu, W., & Xie, H. (2012). A review on nanofluids: preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012(1), 435873. doi.org/10.1155/2012/435873. ##
[34]. Mukherjee, S., & Paria, S. (2013). Preparation and stability of nanofluids-a review. IOSR Journal of Mechanical and civil engineering, 9(2), 63-69. e-ISSN: 2278-1684,p-ISSN: 2320-334X. ##
[35]. Isobe, N., Sagawa, N., Ono, Y., Fujisawa, S., Kimura, S., Kinoshita, K., Miuchi, T., Iwata, T., Isogai, A., Nishino, M. & Deguchi, S. (2020). Primary structure of gum arabic and its dynamics at oil/water interface. Carbohydrate Polymers, 249, 116843. doi.org/10.1016/j.carbpol.2020.116843. ##
[36]. Dror, Y., Cohen, Y., & Yerushalmi-Rozen, R. (2006). Structure of gum arabic in aqueous solution. Journal of Polymer Science Part B: Polymer Physics, 44(22), 3265-3271. doi.org/10.1002/polb.20970. ##
[37]. Shao, H., Cao, Y., Chen, Z., Ding, W., Yin, X., Chen, Y., Ying Liu, & Yang, W. (2023). Gum arabic-assisted polyaniline nanofillers for improving anticorrosion performance of waterborne epoxy coatings. ACS Applied Nano Materials, 6(14), 13270-13283. doi.org/10.1021/acsanm.3c01990. ##
[38]. Han, J., Chen, F., Gao, C., Zhang, Y., & Tang, X. (2020). Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles. International Journal of Biological Macromolecules, 157, 202-211. doi.org/10.1016/j.ijbiomac.2020.04.177. ##
[39]. Yu, W., France, D. M., Routbort, J. L., & Choi, S. U. (2008). Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering, 29(5), 432-460. doi.org/10.1080/01457630701850851. ##
[40]. Morrow, L., Potter, D. K., & Barron, A. R. (2015). Detection of magnetic nanoparticles against proppant and shale reservoir rocks. Journal of Experimental Nanoscience, 10(13), 1028-1041. doi.org/10.1080/17458080.2014.951412. ##
[41]. Arain, Z. U. A. (2020). Influence of silica nanoparticles on the surface properties of carbonate reservoirs (Doctoral dissertation, Curtin University). hdl.handle.net/20.500.11937/81266.
[42]. Golkaria A. Riazi M. (2018). “Comparative study of oil spreading characteristics for water and carbonated water systems using live and dead oils”. Journal of Petroleum Science and Engineering. doi.org/10.1016/j.petrol.2018.07.034. ##
[43]. Unal, R., & Dean, E. B. (1990, January). Taguchi approach to design optimization for quality and cost: an overview. In 1991 Annual conference of the international society of parametric analysts. ##
[44]. Daneshvar, N., Khataee, A. R., Rasoulifard, M. H., & Pourhassan, M. (2007). Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. Journal of Hazardous Materials, 143(1-2), 214-219. doi.org/10.1016/j.jhazmat.2006.09.016. ##
[45]. Kackar, R. N. (1985). Off-line quality control, parameter design, and the Taguchi method. journal of Quality Technology, 17(4), 176-188. doi.org/10.1080/00224065.1985.11978964. ##
[46]. M. Azadi Moghaddam, F.K., M.Andalib .(2012). Application of grey relational analysis and simulated annealing algorithm for modeling and optimization of EDM parameters on 40CrMnMoS86 hot worked steel. 20th Annual International Conference on Mechanical Engineering-ISME2012 16-18 May, 2012. ##
[47]. Sidik, N. A. C., Jamil, M. M., Japar, W. M. A. A., & Adamu, I. M. (2017). A review on preparation methods, stability and applications of hybrid nanofluids. Renewable and Sustainable Energy Reviews, 80, 1112-1122. doi.org/10.1016/j.rser.2017.05.221. ##
[48]. Witharana, S., Palabiyik, I., Musina, Z., & Ding, Y. (2013). Stability of glycol nanofluids—the theory and experiment. Powder technology, 239, 72-77. doi.org/10.1016/j.powtec.2013.01.039. ##
[49]. Anushree, C., & Philip, J. (2016). Assessment of long term stability of aqueous nanofluids using different experimental techniques. Journal of Molecular Liquids, 222, 350-358. doi.org/10.1016/j.molliq.2016.07.051.
[50]. Hendraningrat, L., & Torsaeter, O. (2014, March). Unlocking the potential of metal oxides nanoparticles to enhance the oil recovery. In Offshore Technology Conference Asia (pp. OTC-24696). OTC. doi.org/10.4043/24696-MS. ##
[51]. Rostami, P., Sharifi, M., Aminshahidy, B., & Fahimpour, J. (2020). Enhanced oil recovery using silica nanoparticles in the presence of salts for wettability alteration. Journal of Dispersion Science and Technology. doi.org/10.1080/01932691.2019.1583575. ##
[52]. Eshgarf, H., Kalbasi, R., Maleki, A., Shadloo, M. S., & Karimipour, A. (2021). A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. Journal of Thermal Analysis and Calorimetry, 144, 1959-1983. ##
[53]. Kumar, D. D., & Arasu, A. V. (2018). A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renewable and Sustainable Energy Reviews, 81, 1669-1689. doi.org/10.1016/j.rser.2017.05.257. ##
[54]. Mahpishanian, A. M., Shahverdi, H., Simjoo, M., & Zaeri, M. R. (2021). Experimental investigation of nano silica on wettability alteration and enhanced oil recovery from carbonate reservoir using low salinity water. Journal of Petroleum Research, 30(99-6), 3-20.doi: 10.22078/pr.2020.4187.2897. ##
[55]. Metin, C. O., Lake, L. W., Miranda, C. R., & Nguyen, Q. P. (2011). Stability of aqueous silica nanoparticle dispersions. Journal of Nanoparticle Research, 13, 839-850. ##
[56]. Trefalt G and  Borkovec M. “Overview of DLVO Theory”. 2014. ##
[57]. Agi, A., Junin, R., & Gbadamosi, A. (2018). Mechanism governing nanoparticle flow behaviour in porous media: insight for enhanced oil recovery applications. International Nano Letters, 8, 49-77. ##
[58]. Zhang, H., Shan, G., Liu, H., & Xing, J. (2007). Surface modification of γ-Al2O3 nano-particles with gum arabic and its applications in adsorption and biodesulfurization. Surface and Coatings Technology, 201(16-17), 6917-6921. doi.org/10.1016/j.surfcoat.2006.11.043. ##
[59]. Habibi, S., Jafari, A., & Fakhroueian, Z. (2020). Wettability alteration analysis of smart water/novel functionalized nanocomposites for enhanced oil recovery. Petroleum Science, 17, 1318-1328. ##
[60]. Peng, B., Zhang, L., Luo, J., Wang, P., Ding, B., Zeng, M., & Cheng, Z. (2017). A review of nanomaterials for nanofluid enhanced oil recovery. RSC advances, 7(51), 32246-32254. DOI: 10.1039/C7RA05592G. ##
[61]. El-Masry, J. F., Bou-Hamdan, K. F., Abbas, A. H., & Martyushev, D. A. (2023). A comprehensive review on utilizing nanomaterials in enhanced oil recovery applications. Energies, 16(2), 691.
[62]. Sharifi, L., Ghanbarnezhad, S., Ghofrani, S., & Mirhosseini, S. H. (2014). High porous alumina bodies: production and properties via gel-casting technique. International Journal of Advanced Science and Technology, 65, 59-70. dx.doi.org/10.14257/ijast.2014.65.05. ##
[63]. Jones, K. L., Hu, B., Li, W., Fang, Y., & Yang, J. (2022). Investigation of rheological behaviors of aqueous gum Arabic in the presence of crystalline nanocellulose. Carbohydrate Polymer Technologies and Applications, 4, 100243. doi.org/10.1016/j.carpta.2022.100243. ##
[64]. Namburu, P. K., Kulkarni, D. P., Dandekar, A., & Das, D. K. (2007). Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro & Nano Letters, 2(3), 67-71. doi.org/10.1049/mnl:20070037. ##
[65]. Hashemzadeh, S., & Hormozi, F. (2020). An experimental study on hydraulic and thermal performances of hybrid nanofluids in mini-channel: A new correlation for viscosity of hybrid nanofluids. Journal of Thermal Analysis and Calorimetry, 140, 891-903. ##
[66]. Babar, H., Sajid, M. U., & Ali, H. M. (2019). Viscosity of hybrid nanofluids: a critical review. Thermal Science, 23(3 Part B), 1713-1754. doi.org/10.2298/TSCI181128015B. ##
[67]. Zargar Gh. Arabpoura T. Khaksar Manshada A. Ali J, A. Sajadi S, M. Keshavarzf A.and Mohammadig A, H. (2020). Experimental investigation of the effect of green TiO2/Quartz nanocomposite on interfacial tension reduction, wettability alteration, and oil recovery improvement, Fuel. 263. doi: 10.22078/pr.2024.5376.3393. ##
[68]. Hamdi, S. S., Al-Kayiem, H. H., & Muhsan, A. S. (2020). Natural polymer non-covalently grafted graphene nanoplatelets for improved oil recovery process: A micromodel evaluation. Journal of Molecular Liquids, 310, 113076. doi.org/10.1016/j.molliq.2020.113076. ##
[69]. Al-Sahhaf, T., Elkamel, A., Suttar Ahmed, A., & Khan, A. R. (2005). The influence of temperature, pressure, salinity, and surfactant concentration on the interfacial tension of the n-octane-water system. Chemical Engineering Communications, 192(5), 667-684. doi.org/10.1080/009864490510644. ##
[70]. Divandari H. Hemmati-Sarapardeha A. Scha-ea M.  Ranjbar M. (2020). “ Integrating functionalized magnetite nanoparticles with low salinity water and surfactant solution: Interfacial tension study”. Fuel. 281. ##