تفکیک زون‌های مختلف مخزن هیدروکربنی با کمک رخساره‌های الکتریکی

نوع مقاله: مقاله پژوهشی

نویسندگان

پژوهشگاه صنعت نفت- پژوهشکده مطالعات مخازن و توسعه میادین نفتی

چکیده

رخساره‌های الکتریکی در اصل یک روش قطعی یا تحلیلی برای دسته‌بندی داده‌های چاه نگارهای پتروفیزیکی است که می‌تواند نشان دهنده تغییر ویژگی‌های زمین‌شناسی یا مخزنی باشد. در این مقاله، ابتدا بر اساس داده‌های مغزه (تخلخل- تراوایی) در سه چاه مغزه گیری شده از یکی از میادین نفتی جنوب ایران، سه زون خوب، متوسط و ضعیف از نظر کیفیت مخزنی تعیین شد. سپس با استفاده از چاه نگارهای پتروفیزیکی (شامل نوترن، چگالی، صوتی و مقاومت الکتریکی حقیقی سازند) و روش خوشه‌سازی، مدل رخساره الکتریکی اولیه با 7 خوشه (رخساره) به دست آمد. با بررسی نتایج این مدل و مقایسه آن با داده‌های مغزه، رخساره‌هایی که تقریباً به یک گروه (زون مخزنی) تعلق داشتند، با هم ترکیب گردید. در نتیجه مدل اولیه 7 رخساره‌ای به مدل جدیدی با 3 خساره (معادل سه زون مخرنی) تبدیل شد. این مدل بهینه شده در سه چاه مرجع به کار برده شد که با توجه به نتیجه آن در تفکیک خوب بخش‌های مختلف مخزنی، به تمام چاه‌های میدان مورد مطالعه تعمیم داده شد که در نهایت امکان ساخت یک مدل سه بعدی رخساره‌ای که بخش‌های مخزنی خوب، ضعیف و متوسط را به خوبی از هم متمایز می‌کند، در کل میدان فراهم گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Separating Different Zones of Hydrocarbon Reservoirs by Using Electrofacies

نویسندگان [English]

  • Ali Akbar Rahimibahar
  • Hossein Hossein Porseyami
Faculty of Reservoir Studies& Fields Development, Research Institute of Petroleum (RIPI)
چکیده [English]

Electrofacies is a deterministic or analytical way to practice the partitioning of well log data, which show a variation of geologic or reservoir characteristics. In this paper, we used three cored wells located in one of the oil fields in the south of Iran. Based on the core data (porosity-permeability), the three reservoir zones were identified to have different characteristics. Based on common well logs in all wells (Rhob, Nphi, Dt, and Rt) and MRGC method, an initial electrofacies model with 7 facies was developed. By comparing the results with the core data, those facies with the same reservoir quality were merged together. Thus, we obtained a new model with 3 facies. The new optimized model was then applied to 3 cored wells. It successfully separated poor, moderate, and good reservoir zones. Therefore, the above model was propagated into all wells. The results allowed creating a 3D-facies model of the reservoir in the field. This model properly separated the poor, moderate, and good zones of reservoir.

کلیدواژه‌ها [English]

  • Electrofacies
  • Clustering
  • Well Log
  • Zoning
مراجع

[1]. Rabiller P., “Facies prediction and data modeling for reservoir characterization”, 1st Ed. Rabiller Geo-consulting, 2005.

[2]. Serra O., and Sulpice L., Sedimentological analysis of shale-sand series from well logs. Transactions of the SPWLA 16th Annual Logging Symposium, 1975.

[3]. Serra O., and Abbott H. T., “The contribution of logging data to sedimentary sedimentology and stratigraphy”, Society of Petroleum Engineers Journal, Vol. 22, No. 1, p. 117-131, 1982.

[4]. Serra O. “Fundamentals of well-log interpretation” v. 2rd interpretation of logging data: Elsevier Science Publishers, Amsterdam, No. pp. 15B, 684, 1986

[5]. Wolff M., and Pelissier-Combescure J., FACIOLOG, Automatic electrofacies determination, 23th Annual Logging Symposium Transactions: Society of Professional Well Log Analysts, 22 pp, 1982.

[6]. Busch J. M., Fortney W. G., and Berry L. N., “Determination of lithology from well logs by statistical analysis”, SPE Formation Evaluation, Vol. 2, No. 4, pp. 412-418, 1987.

[7]. Baldwin J. L., Bateman R. M., and Wheatley C. L., “Application of a neural network to the problem of mineral identification from well logs”, The Log Analyst, Vol. 31, No. 5, September-October, p. 279-293, 1990.

[8]. Baldwin J. L., Otte D. N., and Bateman R. M., “Computer emulation of human mental processes: application of neural network simulators to problems in well log interpretation”, SPE Annual Technical Conference and Exhibition Proceedings (SPE-19619), v. omega, Formation Evaluation and Reservoir Geology: Society of Petroleum Engineers, pp. 481-493, 1989.

[9]. Rogers S. J., Fang J. H., Karr C. L., and Stanley D. A., “Determination of lithology from well logs using a neural network: AAPG Bulletin”, Vol. 76, No. 5, pp. 731-739, 1992.

[10]. Mwenifumbo C. J., and Blangy J. P., Short-term spectral analysis of downhole logging measurements from site 704, chapter 30, in Ciesielski, P.F., Kristoffersen, Y., et al., eds., Proceedings of the Ocean Drilling Program, scientific results, v. 114: Texas A&M University, Ocean Drilling Program, College Station, Texas, pp. 577-585, 1991.

[11]. Ye S.J., and Rabiller Ph., “A new tool for electrofacies analysis: multi resolution graph based clustering”, SPWLA, 41 Annual Logging Symposium, June 4-7, 2000.